FUNCTIONAL SERVICING & STORMWATER MANAGEMENT REPORT

GLENELG PHASE 3 DUNDALK VILLAGE TWO INC.

TOWNSHIP OF SOUTHGATE

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 1 FIRST STREET, SUITE 200 COLLINGWOOD, ONTARIO L9Y 1A1

AUGUST 2022

CFCA FILE NO. 1060-6220

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

TABLE OF CONTENTS

1.0		1
2.0	DEVELOPMENT BACKGROUND	1
3.0	SITE DESCRIPTION	2
4.0	ROAD STANDARD	2
5.0	SANITARY SEWAGE SYSTEM	2
5.1 5.2 6.0	Existing Sanitary Sewer Infrastructure Proposed Sanitary Sewer Infrastructure POTABLE WATER SUPPLY	3
6.1 6.2 6.3	Existing Potable Water Supply Infrastructure Future Infrastructure Proposed Servicing Strategy	4 5
7.0 7.1	PROPOSED STORMWATER MANAGEMENT, SITE GRADING AND DRAINAGE	
7.1	Existing Drainage Conditions	
7.3	Proposed Drainage Conditions	
7.4	Proposed SWM Strategy	
7.5	Hydrologic Analysis	
7	.5.1 Pre-Development Model Setup .5.2 Post-Development Model Setup	10
	.5.3 Quantity Control .5.4 Stormwater Quality	
	.5.4 Stormwater Quality	
7.6		
8.0	UTILITIES	
9.0	CONCLUSIONS & RECOMMENDATIONS	

LIST OF APPENDICES

Appendix A:	Sanitary Demand and Wastewater Treatment Plant Capacity Calculations
Appendix B:	Water Demand and Water Treatment Plant Capacity Calculations
Appendix C:	Hydrologic Parameter Sheets
Appendix D:	VO6 Model Input & Output Files
Appendix E:	SWM Facility Calculations
Appendix F:	Water Balance Calculations
Appendix G:	Glenelg Phase 2 Lands Design Excerpts

LIST OF FIGURES

Figure 1:	Site Location Plan
Figure 2:	Draft Plan of Subdivision
Figure 3:	Preliminary Grading Plan
Figure 4:	General Site Servicing Plan
Figure 5:	Pre-Development Drainage Plan
Figure 6:	Existing Tile Drains and Pre-Development Drainage
Figure 7:	Conservation Areas and Pre-Development Drainage Plan
Figure 8:	Post-Development Drainage Plan
Figure 9:	Preliminary SWMF #1
Figure 10:	Proposed LID Plan #1

1.0 INTRODUCTION

Crozier Consulting Engineers ("Crozier") has been retained by Dundalk Village Two Inc. ("the Developer") to prepare a Functional Servicing and Stormwater Management Report in support of a Draft Plan of Subdivision Application for Glenelg Phase 3 ("Subject Development") located in the north end of the Community of Dundalk, Township of Southgate, County of Grey. The proposed development is herein referred to as the Subject Development. Please refer to **Figure 1** for the Site Location.

The Developer's overall property is approximately 132 ha. The property is legally described as Lots 227, 226, 225, 224, 223, Concession 1, southwest of the Toronto and Sydenham Road as well as Lots 226, 225 Concession 2, southwest of the Toronto and Sydenham Road Geographic Township of Proton, Township of Southgate, County of Grey.

The Subject Development is approximately 33.3 ha and is bounded by CP Rail Trail to the west, wetlands to the east, farmland to the north and residential properties to the south. The Subject Development is located northeast of Glenelg Residential Development – Phase 2.

The Subject Development will consist of 369 single-detached units, 18 semi-detached units, 72 townhouse units, a park block, walkways/ trails, a stormwater management block, an environmental protection area, and approximately 7.45ha of urban Right-of-Way (ROW). The Draft Plan prepared by MHBC Planning (August 18, 2022) has been included in **Figure 2**.

The Developer has assembled a multi-disciplinary consulting team to assist with the technical studies in support of this development. The consulting team includes:

- SLR Consulting Ltd. (SLR) (environmental and hydrogeological)
- Soil Engineers Ltd. (SEL) (geotechnical)
- MHBC (planning)
- CF Crozier & Associates Inc. (civil and transportation engineering)

This report should be read in conjunction with the studies, plans and reports prepared by other members of the development team.

This report has been prepared to provide information concerning the servicing (water, sewer, utilities, and roads) and stormwater management strategy for the development.

2.0 DEVELOPMENT BACKGROUND

The Subject Development is currently designated as Neighborhood Area, within Schedule 'A' Map 2 of the Township of Southgate Official Plan (2022) and associated amendments. The hazard lands are taken into consideration in the Concept Plan as that area will be designated as Environmental Protection.

Nearby Draft Plan Approved developments currently undergoing the detailed design process include the 155-unit Glenelg Residential Development – Phase 2 bordering the west limits of the Subject Development and the 88-unit White Rose Park – Phase 3 Development located to the south.

3.0 SITE DESCRIPTION

The overall 33.3 ha Subject Development consists largely of agricultural fields, and a natural heritage area exists in the east portion of the site. The limits of the Natural Heritage area have been staked and an appropriate development setback has been applied from dripline through consultation with the Grand River and Saugeen Valley Conservation Authorities. The natural heritage constraints on site have been investigated in detail by SLR. Refer to the Environmental Impact Study (SLR, November 2021) which has been provided under separate cover for more information.

The property topography consists of rolling hills with a central depression with a low point at the northern property line. On site elevations range from 515.5 to 525.2 m. The site lies within the regulatory boundary of the Grand River and Saugeen Valley Conservation Authorities. Site drainage is further discussed in **Section 7.2**.

Preliminary desktop review of the soil by the Soil Survey Map of Grey County (1962) indicates that the site is underlain by Listowel Silty Loam soils. At this time SEL is undergoing a soil investigation which will be provided in support of future submissions.

4.0 ROAD STANDARD

Access to the Development is proposed to be provided through two entrances from Glenelg Residential Development – Phase 2, as well as an entrance on the southern boundary from Bradley Street. Roadways and entrances will be constructed in conformance with the Township of Southgate Engineering Standards.

A Traffic Impact Study has been prepared by our office under separate cover, which details transportation engineering considerations and mitigative measures related to the Development. Roadway slopes will range between 0.5% and 8% in conformance with Township of Southgate Engineering Standards. The general grading concept for the Development is presented in **Figure 3**.

Design criteria for the entrances will meet municipal guidelines as well as the applicable sections from the Ontario Building Code (i.e., fire routes).

The internal roadways of the Development will be assumed by the Municipality upon registration of the subdivision.

5.0 SANITARY SEWAGE SYSTEM

5.1 Existing Sanitary Sewer Infrastructure

5.1.1 <u>Wastewater Treatment Plant Capacity</u>

The existing wastewater treatment plant (WWTP) is located on Eco Parkway at the south end of Dundalk. The plant treats sewage and discharges the treated effluent to the Foley Drain/Grand River. Per the Township of Southgate 2022 Reserve Capacity Study (Triton Engineering, 2022), the plant currently operates on average at 1,165 m³/day. The uncommitted reserve capacity for the sewage treatment facility is 182 new development ERU's (Equivalent Residential Units). Since this reserve capacity will not be sufficient to service various potential developments that have been granted Draft Plan Approval the municipality is currently in the process of upgrading the wastewater treatment plant to increase capacity in Dundalk from 1,832 m³/day to 3,025 m³/day to support growth. Refer to **Appendix A** for relevant wastewater treatment plant capacity calculations.

The estimated completion dates of the wastewater treatment plant upgrades are early 2023, which coincides with the timing of building permit submission for the Subject Development. **Table 1** details the Township of Southgate '2022 Reserve Sewage Capacity' and project the wastewater treatment capacities after the 2023 upgrades have been completed.

Dundalk Sewage Treatment Facility Summary				
Description	2021	2023		
Wastewater Treatment Facility Design Capacity (m ³ /day)	1,832	3,025		
Current Daily Average Flow (m³/day)	1,165			
Available Capacity (m³/day)	667	1,860		
Average New Development Per Capita Flow (1)	0.350	0.350		
Additional Population that can be Served	1905	5,314		
Person Per ERU (1)	2.66	2.66		
Additional ERU Capacity	716	1997		
Committed ERUs	534	534		
Available Uncommitted ERUs	182	1463		

⁽¹⁾ Per 2017 DC Background Study

5.1.2 Existing Infrastructure

The existing sewage infrastructure within the vicinity of the Subject Development includes the following:

- Two (2) 250 mm diameter sanitary sewer stubs located at Aitchison Avenue and Corbett Street (Glenelg Residential Development Phase 1 Lands).
- One (1) 200 mm diameter sanitary sewer that currently ends at a Maintenance Hole at the end of Bradley Street

5.1.3 <u>Future Infrastructure</u>

- Two (2) 250 mm diameter sanitary sewer stubs located at Corbett Street (Glenelg Residential Development Phase 2 Lands).
- One (1) 200 mm diameter sanitary sewer that the Bradley Street Extension (White Rose Development Phase 3)

5.2 Proposed Sanitary Sewer Infrastructure

Sanitary servicing for the development will be supplied by way of connection to the existing Dundalk sanitary sewer collection network. Flows from the Subject Development will ultimately be conveyed to the existing Dundalk Wastewater Treatment Plant.

The Subject Development will be serviced via a gravity sanitary sewer system that follows the alignment of the internal roadway network, with individual service connections to each lot. A substantial amount of fill will be required near portions of the site to ensure adequate cover over the

sanitary sewer. Options to reduce fill quantities will be explored. Upon subdivision registration, sewers and associated roadways will be assumed by the Municipality.

The proposed sanitary sewer for the development will connect to a 200 mm diameter sanitary sewer stub on Bradley Street as well as two 250 mm diameter connections from Glenelg Residential Development Phase 2. The estimated sanitary flow to Glenelg Phase 2 was found to be 12.32 L/s. The estimated flow to the Bradley Street connection was found to be 10.33 L/s. The conveyance capacity of downstream sanitary sewer network, through the Glenelg Residential Development – Phase 2, has been determined to be adequate. A preliminary assessment of the sewers downstream of the Bradley Street connection of 200 mm diameter pipe along Artemesia Street between Toronto Street and Owen Sound Street will be approaching 100% capacity under the proposed development conditions. This leg of sewer and roadway is proposed to be reconstructed to meet the service requirements of the subject development. The conveyance capacity of all downstream infrastructure will be subject to confirmation by the Township's Engineering Consultant. Sanitary infrastructure for the proposed development is illustrated in **Figure 4**. Refer to **Appendix A** for the sanitary flow calculations.

Sanitary flow estimates for the development were estimated in conjunction with the Township of Southgate Engineering Design Standards and the "New Development Unit Flow Rates" as described within the 2022 Reserve Capacity, prepared by the Township's Engineering Consultant.

6.0 POTABLE WATER SUPPLY

6.1 Existing Potable Water Supply Infrastructure

Potable water for the development will be supplied by the Township's municipal water distribution system.

The existing water treatment plant system in Dundalk includes three existing production wells. Per the 2022 Reserve Capacity Study, the well system operates at a maximum daily flow of 941 m³/day. This value represents approximately 33% of the system's allowable withdrawal capacity of 2,817 m³/day, as specified in the Township's Permit to Take Water. Based on this, the existing system has ample capacity to support Glenelg Phase 3 Development. Refer to **Appendix B** for relevant water capacity calculations.

The existing water distribution infrastructure within the vicinity of the Subject Development includes the following:

- Two (2) 150mm diameter watermain connection stubs located at Aitchison Avenue and Corbett Street (Glenelg Residential Development Phase 1 Lands).
- One (1) 150mm diameter watermain that dead ends at Bradley Street.

6.2 Future Infrastructure

- Two (2) 150mm diameter watermain connection stubs located at Corbett Street (Glenelg Residential Development Phase 2 Lands).
- One (1) 150mm diameter watermain that dead ends at Bradley Street Extension (White Rose Development Phase 3).

6.3 Proposed Servicing Strategy

The Subject Development will be serviced via three future watermain connections. There will two watermain connections at the future ROWs within the Glenelg Residential Development – Phase 2. Additionally, there will be a connection to the watermain at the future White Rose Park – Phase 3.

Watermain with individual service connections for each unit will follow the alignment of the internal roadways according to Township Standards. Connections to the Glenelg Residential Development – Phase 2 and White Rose – Phase 3. This will facilitate a looped distribution network and satisfy the Township and Ministry of Environment, Conservation and Park's requirements for a looped water distribution system. The Draft Plan does not include any watermain dead-ends and therefore there should be no issue with respect to providing adequate water circulation and preventing the potential for stagnant potable water.

Fire hydrants will be spaced as required to provide the necessary fire protection per municipal standards. Required domestic water flows have been calculated in conformance with the Township of Southgate's Engineering Design Standards and the "New Development Unit Flow Rates" specified within the 2022 Reserve Capacity Study. The maximum day and peak hour water demands have been estimated to be 10.70 L/s and 16.07 L/s, respectively. Additional water supply considerations including fire suppression requirements will be determined during the detailed design phase. Internal watermain sizing will be subject to detailed design and confirmation by the Township's Engineering Consultant.

Refer to **Appendix B** for relevant water demand calculations. The proposed watermain layout is illustrated on **Figure 4**.

7.0 PROPOSED STORMWATER MANAGEMENT, SITE GRADING AND DRAINAGE

7.1 Stormwater Management (SWM) Criteria

The management of stormwater and site drainage for the proposed development must comply with the policies and standards of the various agencies including the Township of Southgate, Grand River Conservation Authority (GRCA), Saugeen Valley Conservation Authority (SVCA) and the Ministry of Environment, Conservation and Parks (MECP).

The stormwater management criteria for the Subject Development includes:

- Water Quantity Control
 - Control of post-development peak flows to pre-development levels for all storms up to and including the 100-year event.
- Water Quality Control
 - 80% removal efficiency of total suspended solids per MECP "enhanced protection" requirements.
- Erosion Control
 - Minimum 24-hour detention of the 25mm event.
- Development Standards
 - Urban cross section for public roadway with 5-year storm sewer system.
 - Lot grading at 2% optimum.

• Minor and major drainage system to convey frequent and infrequent rainfall/runoff events, respectively.

In meeting the applicable policies and standards of the aforementioned agencies, the development will also be required to meet the following criteria:

- Manage the internal stormwater by safely conveying peak flows to suitable outlets and provide the necessary water quality controls.
- Manage any external drainage entering the site by providing safe conveyance across the Subject Development.
- Ensuring the development lands are not susceptible to flood inundation during all storm events.

7.2 Existing Drainage Conditions

Topographic survey indicates that the terrain has rolling hills with a depression in the middle of the site and a low point at the north property line. There is a high point near the east corner of the site where runoff drains towards the natural heritage area and the east property line. The rest of the site drains towards a point on the southeast property line, towards the CP Rail Trail and to the residential lands to the south.

To the west of the development lies the CP Rail Trail. This trail represents an elevated linear structure bounding the property line and has been constructed with side ditches preventing external flows from entering the development site.

To facilitate the pre-development stormwater analysis, the following five (5) catchments have been delineated based on the existing drainage conditions.

- **Catchment PRE-1**: This catchment area is approximately 4.32 ha and is located along the west border of the site. It consists of active agricultural fields. Stormwater from this catchment drains to the west towards the CP trail (outlet #1). Flows entering the CP trail drain in the north direction to a tile drain located on a neighboring property to the north. The flows in the tile drain ultimately are discharged to the northeast wetland.
- **Catchment PRE-2**: This catchment area is approximately 13.33 ha and is in the middle of the site. It consists of active agricultural fields. Stormwater from this catchment drains to the north tile drain (outlet #2). The flows in the tile drain are discharged to the northeast wetland, the same wetland that PRE-1 ultimately discharges to.
- **Catchment PRE-3**: This catchment area is approximately 3.05 ha and is located along the eastern corner of the subject site. It consists of active agricultural fields. Stormwater from this catchment drains to the east tile drain (outlet #3). Flows entering the east tile drain are conveyed to a wetland located within the SVCA regulation area.
- **Catchment PRE-4**: This catchment area is approximately 2.29 ha and is located along the southeastern corner of the subject site. It consists of active agricultural fields. Stormwater from this catchment drains to the southeast tile drain (outlet #4). Flows entering the southeast tile drain are conveyed to a wetland located within the GRCA regulation area.
- **Catchment PRE-5**: This catchment area is approximately 3.00 ha and is located along the south boundary of the subject site. It consists of active agricultural fields. Stormwater from this catchment drains to the residential subdivision to the south.

The existing drainage patterns of the site and conservation authority regulation areas have been reflected in the Pre-Development Drainage Plan (Figure 5). Additional information on the predevelopment drainage and tile drain locations is provided in Figure 6. For the pre-development hydro parameter sheets, please refer to Appendix C.

7.3 Proposed Drainage Conditions

The Subject Development will be constructed to a fully urbanized system complete with curb and gutter and storm sewers. A dual drainage approach will consist of minor and major stormwater flow routes to ensure adequate conveyance for runoff. The minor drainage system will consist of storm sewers and catchbasins sized to convey the 5-year design storm event. The major drainage system will provide overland stormwater flow routes within the road allowance. Refer to **Figure 4** for proposed storm sewer layout.

To facilitate the post-development stormwater analysis, the following seven (7) catchments have been delineated based on the proposed drainage conditions.

- **Catchment POST-1:** This catchment area is approximately 0.50 ha and consists of a portion of the proposed developed area. The catchment consists of the backlots of the single-detached units. Runoff from this catchment will drain uncontrolled to the Grey County CP Trail (outlet #1). Flows entering the CP trail drain in the north direction to a tile drain located on a neighboring property to the north. The flows in the tile drain ultimately are discharged to the northeast wetland.
- **Catchment POST-2:** This catchment area is approximately 18.83 ha and consists of a large portion of the proposed developed area. The catchment consists of single-family residential, semi-detached residential, townhouses, walkways, and roads. Runoff from this catchment will drain to the SWM facility that discharges to outlet #2. The flows then enter the northeast wetland.
- **Catchment POST-3:** This catchment area is approximately 2.84 ha and consists of a portion of the proposed developed area. The catchment consists of single-family residential, parklands, walkways, and roads. Runoff from this catchment will drain ultimately to outlet #3 (east tile drain). Flows are then conveyed to the east wetland.
- **Catchment POST-4:** This catchment area is approximately 1.09 ha and consists of a portion of the proposed developed area. The catchment consists of the backlots of single-detached units. Runoff from this catchment will drain controlled and uncontrolled to outlet #4 (southeast tile drain).
- **SWMF:** This catchment represents the proposed 1.43 ha SWM Facility block. Runoff from this catchment will drain to the SWM Facility. The SWM Facility will then discharge flows to outlet #2 (north tile drain). Flows are then discharged to the northeast wetland.
- **Catchment POST-5:** This catchment area is approximately 1.28 ha and consists of front lots of single-detached residential units and road area. The minor system will be captured and conveyed to the SWMF. The major system will drain overland to the SWM Facility servicing the Glenelg Phase 2 Lands.
- **Catchment TR-1:** This catchment area is approximately 0.78 ha and consists of the backlots of the single-detached units in Glenelg Phase 2. Runoff from this external catchment will drain uncontrolled to the Grey County CP Trail (outlet #1). Flows entering the CP trail drain in the north direction to a tile drain located on a neighboring property to the north. The flows in the tile drain ultimately are discharged to the northeast wetland. This drainage was taken into consideration from the Glenelg Phase 2 Lands.

The post-development drainage conditions and catchment areas have been presented in Figure 8.

Under post-development conditions, the majority of the stormwater from the Subject Development is currently proposed to drain to the SWM facility and outlet to the north tile drain (outlet #2). A portion of the site will drain to each outlet to mimic pre-development conditions. The exception to this is the pre-development catchment draining into the southern residential subdivision (PRE-5). In post-development conditions, flows will not drain to the residential subdivision to the south, as the subdivision was not designed to accommodate the drainage. Additionally, it should be noted that a

portion of the subject site will drain overland to the Glenelg Phase 2 subdivision SWMF to alleviate grading issues associated with matching into the proposed right-of-way connections. The Glenelg Phase 2 SWM Facility is sufficiently sized to accept, treat, and control the major system drainage from this area. Excerpts from the Phase 2 SWM Facility modeling are included in **Appendix G**.

7.4 Proposed SWM Strategy

The stormwater management strategy varies for each of the seven (7) post-development catchment areas.

For catchment POST-1, backlots of the single-detached units will be conveyed via sheet flow into the CP Trail ditch (Outlet #1). The clean water from the backlots of the single-detached units is proposed to flow uncontrolled and will not require quality treatment. Flows entering outlet #1 (CP Trail) will be conveyed to the north in the CP trail ditch to a neighboring tile drain that ultimately discharges runoff to the northeast wetland.

For catchment POST-2, the drainage area will be routed through the SWMF (SWM pond). Flows from the front lots of the residential units and roadway area will be treated via catchbasin shields and tree pits prior to entering the SWMF. The SWMF is adequately sized to provide quantity, quality, and erosion control for the contributing drainage area. The conceptual proposed stormwater management facility has incorporated a permanent pool and a sediment forebay to provide appropriate water quality treatment. The SWMF will also incorporate extended detention of the 25mm storm event to provide erosion protection. An outlet from the facility will be provided to release flows through to the northeast wetland via outlet #2. Quantity control will be achieved to ensure pre-development peak flows are not exceeded to outlet #2 (north tile drain) and the northeast wetland.

For catchment POST-3, front lots of the single-detached units and road area will be directed to catchbasin shields and tree pits. Overflow from the front lots/road area and park runoff will be directed to the permeable pavement areas (walkways) and bioretention facilities within the park prior to being discharged to Outlet #3 (east tile drain). This treatment train approach will achieve quality control targets (enhanced 80% TSS removal). Clean water from the backlots of the single-detached units will drain controlled via a superpipe and uncontrolled via sheet flow to outlet #3. Quantity control will be achieved to ensure pre-development peak flows are not exceeded to outlet #3 (east tile drain) and the east wetland.

For catchment POST-4, clean water from the back lots of the residential units will drain to outlet #4. Runoff from the backlots will drain controlled via a superpipe and uncontrolled via sheet flow to outlet #4 and the southeast wetland. Quantity control will be achieved to ensure pre-development peak flows are not exceeded to outlet #4 (southeast tile drain) and the southeast wetland.

Catchment POST-5 has a separate outlet for the major and minor storm events. For the minor storm events (up to the 5-year design storm) the front lots of the single-detached units and road area will be directed to catchbasin shields and tree pits prior to entering the storm sewer network and being discharged to SWMF and ultimately Outlet #2. The SWMF has been designed to match predevelopment peak flow rates at the outlet taking the POST-5 flows into consideration. For the major storm events (flow exceeding the 5-year design storm), flows will be conveyed through the two road connections to Glenelg Phase 2. Stormwater entering Glenelg Phase 2 will be conveyed through the road network into the stormwater management pond. The Glenelg Phase 2 pond has sufficient capacity to treat flows from POST-5. Quality treatment for the stormwater has been provided in the Glenelg Phase 3 SWMF. For catchment SWMF, clean water will drain to the SWM Pond. The SWMF is adequately sized to provide quantity, quality, and erosion control for the contributing drainage area. The conceptual proposed stormwater management facility has incorporated a permanent pool and a sediment forebay to provide appropriate water quality treatment. The SWMF will also incorporate extended detention for erosion protection. An outlet from the facility will be provided to release flows through to outlet #2, the northeast wetland. Quantity control will be achieved to ensure pre-development peak flows are not exceeded to outlet #2.

For catchment TR-1, clean water from the residential backlots of the Glenelg Phase 2 Lands will drain uncontrolled via sheet flow to the Grey County CP Trail (outlet #1). These flows will not require quality control treatment. Quantity control will be achieved to ensure pre-development peak flows are not exceeded to outlet #1.

7.5 Hydrologic Analysis

A hydrologic model was prepared for the pre-development and post-development scenarios using the stormwater management hydrologic computer program Visual OTTHYMO 6.1 (VO6). The purpose of the modeling was to ensure that quantity control requirements are met (i.e., post-development peak flow rates do not exceed the pre-development flows to the respective drainage area).

To accurately assess the peak flows from the individual catchments, the NasHyd command in VO6 was used to model the pre-development drainage areas. Design storms were generated for the 2year, 5-year, 10-year, 25-year, 50-year and 100-year events utilizing both 3-hour Chicago and 24-hour SCS Type II rainfall distributions. The Township of Southgate Engineering Standards requires only the modeling of the 3-hour Chicago distribution storms for quantity control facilities. Nevertheless, the 24-hour SCS distribution has been included in the design to ensure the provision of adequate and conservative quantity control. The 25mm Chicago quality event was also modeled within VO6. Intensity-Duration-Frequency (IDF) values were derived from the Ministry of Transportation IDF tool for the Community of Dundalk.

7.5.1 <u>Pre-Development Model Setup</u>

To establish the pre-development peak flows, the contributing drainage areas were modeled within VO6. Please refer to **Figure 5** for the Pre-Development Drainage Plan and **Appendix C** for the predevelopment hydrological parameter sheets. **Table 2** summarizes the pre-development peak flows rates obtained from the VO6 model.

	Pre-Development Peak Flow Rates (m ³ /s)					
Return Period	PRE-1 Drainage to CP Trail (4.32ha)	PRE-2 Drainage to North Tile Drain (13.33ha)	PRE-3 Drainage to East Tile Drain (3.05ha)	PRE-4 Drainage to South Residential (2.29ha)	PRE-5 Drainage to Southeast Tile Drain (3.0ha)	
	3-Hour 10 min Chicago					
2-Year	0.044	0.100	0.041	0.022	0.047	
5-Year	0.086	0.190	0.081	0.042	0.093	
10-Year	0.119	0.261	0.115	0.059	0.131	
25-Year	0.166	0.361	0.162	0.082	0.186	

Table 2: Summary of Pre-Development Peak Flow Rates

50-Year	0.204	0.442	0.200	0.101	0.230
100-Year	0.244	0.528	0.241	0.121	0.278
		24-Hour 15	min SCS Type II	·	
2-Year	0.143	0.296	0.144	0.070	0.162
5-Year	0.239	0.495	0.241	0.117	0.269
10-Year	0.310	0.643	0.313	0.152	0.349
25-Year	0.404	0.839	0.407	0.199	0.455
50-Year	0.476	0.990	0.479	0.234	0.537
100-Year	0.551	1.146	0.554	0.271	0.621

7.5.2 Post-Development Model Setup

The post-development model was prepared by adding the post-development drainage catchments as referenced in **Section 7.3**. Refer to **Figure 8** for the Post-Development Drainage Plan and **Appendix C** for the post-development area breakdown calculations.

To model the post-development condition, the respective drainage areas were modelled via a combination of StandHyds, NasHyds, RouteReservoirs, DuHyds, and LID commands. Using these tools, the post-development peak flows were analyzed to ensure that quantity control targets were met in the post-development condition. The DuHyd commands were applied to separate the minor and major system flows entering the LIDs. The LIDs were sized based on a water balance analysis that is discussed further in **Section 7.6.** For additional information regarding the layout of the VO6 model, please refer to the VO schematic presented in **Appendix D**.

7.5.3 Quantity Control

'Post-to-Pre' peak flow control is proposed for the four outlets for all storm events up to and including the 100-year storm event.

Outlet #1

 Table 3 presents the pre-development and post-development peak flows to outlet #1. As shown, the post-development flows are less than the pre-development flows for all storms.

Return Period	Pre-Development (m³/s) [4.32 ha]	Post-Development (m³/s) [1.28 ha] ⁽¹⁾
	3-Hour 10 min Chicago	
2-Year	0.044	0.040
5-Year	0.086	0.073
10-Year	0.119	0.099
25-Year	0.166	0.133
50-Year	0.204	0.160
100-Year	0.244	0.188
	24-Hour 15 min SCS Type II	
2-Year	0.143	0.098
5-Year	0.239	0.155
10-Year	0.310	0.195

Table 3: Summary of Pre- and Post-Development Peak Flows (Outlet #1)

25-Year	0.404	0.248
50-Year	0.476	0.288
100-Year	0.551	0.328

⁽¹⁾ Catchment area from TR-1 (0.78ha) and POST-1 (0.50ha)

Outlet #2

The proposed SWM Facility will be a stormwater management wet pond located on the north side of the development that will provide the required stormwater quantity, quality, and erosion controls. The SWM pond will discharge stormwater to outlet #2 into the northeast wetland.

A preliminary outlet structure has been designed as a multi-stage outlet to address both quality and quantity control requirements. The outlet structure will consist of a 200 mm diameter extended detention orifice set at the permanent pool elevation. A secondary orifice has been included above the extended detention storage elevation to control effluent from the pond for storms exceeding the 25 mm event.

Using the ROUTE RESERVOIR command in VO6, the volume of detention storage required in the SWMF to attenuate the post-development peak flows to pre-development was determined based on a storage – discharge relationship. The ROUTE RESERVOIR command was used to model the wet pond storage. To meet quantity control requirements, it was concluded that approximately 12,720 m³ of active detention storage is required in the SWM Facility. **Table 4** presents the required storage volume for the SWMF. Please refer to **Appendix E** for detailed SWMF calculations. The preliminary design of the SWM Facility has been presented in **Figure 9**.

Table 4: Summary of SWM Facility – Required Storage Volumes

Return Period	Storage Volume (m³)		
keiom renoa	3-Hour 10 min Chicago	24-Hour 15 min SCS Type II	
2-Year	3914	5581	
5-Year	5171	7520	
10-Year	5883	8725	
25-Year	6861	10340	
50-Year	7548	11524	
100-Year	8244	12720	

Table 5 presents the pre-development and post-development peak flows to outlet #2. As shown, the post-development flows are less than the pre-development flows for all storms.

Table 5: Summary of Pre- and Post-Development Peak Flows (Outlet #2)

Return Period (Years)	Pre-Development (m³/s) [13.33 ha]	Post-Development (m³/s) [21.55 ha]	
	3-Hour 10 min Chicago		
2-Year	0.100	0.092	
5-Year	0.190	0.186	
10-Year	0.261	0.239	
25-Year	0.361	0.327	
50-Year	0.442	0.404	
100-Year	0.528	0.481	
24-Hour 15 min SCS Type II			

2-Year	0.296	0.216
5-Year	0.495	0.401
10-Year	0.643	0.535
25-Year	0.839	0.721
50-Year	0.990	0.868
100-Year	1.146	1.019

Outlet #3

Table 6 presents the pre-development and post-development peak flows to outlet #3. As shown, the post-development flows are less than the pre-development flows for all storms.

Return Period (Years)	Pre-Development (m³/s) [3.05 ha]	Post-Development (m³/s) [2.84 ha]					
	3-Hour 10 min Chicago						
2-Year	0.041	0.026					
5-Year	0.081	0.044					
10-Year	0.115	0.065					
25-Year	0.162	0.112					
50-Year	0.200	0.149					
100-Year	0.241	0.186					
	24-Hour 15 min SCS Type II						
2-Year	0.144	0.116					
5-Year	0.241	0.203					
10-Year	0.313	0.251					
25-Year	0.407	0.351					
50-Year	0.479	0.446					
100-Year	0.554	0.525					

Table 6: Summary of Pre- and Post-Development Peak Flows (Outlet #3)

Outlet #4

Table 7 presents the pre-development and post-development peak flows to outlet #4. As shown, the post-development flows are less than the pre-development flows for all storms.

Table 7: Summary of Pre- and Post-Development Peak Flows (Outlet #4)

Return Period (Years)	Pre-Development (m³/s) [2.29 ha]	Post-Development (m³/s) [1.09 ha]									
3-Hour 10 min Chicago											
2-Year	0.047	0.046									
5-Year	0.093	0.087									
10-Year	0.131	0.117									
25-Year	0.186	0.157									
50-Year	0.230	0.189									
100-Year	0.278	0.222									
	24-Hour 15 min SCS Type II										
2-Year	0.162	0.107									
5-Year	0.269	0.164									

10-Year	0.349	0.206
25-Year	0.455	0.261
50-Year	0.537	0.303
100-Year	0.621	0.345

7.5.4 <u>Stormwater Quality</u>

As mentioned in **Section 7.4**, the SWM strategy varies based on the post-development drainage area. For catchment POST-3, a treatment train approach is proposed to provide the enhanced 80% TSS removal required. This treatment train approach includes catchbasin shields, tree pits, bioretention, and permeable pavement. The contributing area to POST-1, POST-4 and TR-1 requires no quality control due to clean water areas (roofs and backlots of residential units).

For POST-2, POST-5 and SWMF, quality control will be provided by the SWM Facility. The conceptual design of the proposed SWM Facility has incorporated a permanent pool and a sediment forebay to provide "enhanced protection" (*Stormwater Management Planning and Design Manual*, Ministry of the Environment, 2003). A sediment forebay has been provided to facilitate enhanced quality treatment in conformance with MECP forebay design guidelines. See **Appendix E** for forebay sizing calculations.

The Subject Development drainage area for the SWM Facility is 21.55 ha with an associated imperviousness of 67%. As such, the minimum water quality volume for the stormwater wet pond is 219 m³/ha (Stormwater Management Planning and Design Manual, Ministry of the Environment, 2003). The total water quality volume consists of 179 m³/ha for the permanent pool and 40 m³/ha for extended detention. Erosion control will be achieved within the SWMF facility via the detention of the 25mm event for a minimum drawdown of 24 hours.

The required and provided extended detention and permanent pool values have been summarized in **Table 8**. Refer to **Appendix E** for the water quality and extended detention calculations.

	SWM Facility										
	Required Volume (m ³)	Provided Volume (m ³)									
Permanent Pool	3852	3990									
MOE Extended Detention	862	3368									
Erosion Control	3350										

Table 8: Stormwater Management Facility Quality and Erosion Control

7.5.5 <u>Stormwater Management Facility Operating Conditions</u>

Considering the water quantity and quality storage requirements for the POST-2, POST-5 and SWMF drainage areas, a preliminary design for the SWM Facility has been completed to demonstrate that the SWM block is adequately sized. A preliminary operating profile of the SWM facility is presented in **Table 9**.

Component	Elevation (m)	Storage Required (m³)	Storage Provided (m ³)
Bottom	516.62		
Permanent Pool	518.20	3852	3990
Extended Detention	519.03	3350	3368
100-Year High Water Level	520.45	12720	13041
Top of Berm	520.75		15858

Table 9: SWM Facility Operating Characteristics

As evidenced by Error! Reference source not found., the pond presented herein is sufficiently sized to p rovide the required stormwater quantity and quality controls. Permits and other regulatory instruments such as an Environmental Compliance Approval (MECP) and Conservation Authority approval will be secured at the detailed design stage.

7.6 Water Balance

A feature-based water balance was completed for the subject site due to the proximity of nearby wetland features. The pre-development subject site was delineated into five drainage areas as mentioned in **Section 7.2**. The pre-development water balance was then used to determine the annual pre-development runoff volumes to each drainage area.

In post-development conditions, runoff is increased by 147% annually over the entire subject site compared with pre-development conditions. To reduce the annual runoff in post-development conditions, mitigation measures were introduced on-site via the proposed LIDs. These mitigation measures are proposed to reduce the amount of runoff by volume draining to each of the outlets that feed downstream wetlands.

Due to the soil strata underlying the native soils and groundwater monitoring results, there are considerable constraints to implementing an infiltration system(s) across the subject site. Shallow low-impact development (LID) measures were explored for this reason.

To increase infiltration and reduce runoff, the following LID measures are proposed for the Subject Development. Please refer to **Appendix F** for the LID-specific calculations. The proposed LID locations have been presented in **Figure 10**.

• Tree Pits

Tree pits are proposed throughout the Subject Development within the road right of way between the sidewalk and the street. Runoff draining from the right of way and front lots will drain to the tree pits. Based on the proposed layout and contributing drainage area, the tree pits would mitigate 14,508 m³ of infiltration per year in post-development conditions. A minimum clearance of 1m is provided between the bottom of the LID and groundwater elevation. In the sizing of the tree pits, a minimum infiltration rate of 12mm/hr was assumed with a safety factor of 2 giving a design infiltration rate of 6mm/hr.

Bioretention Cells

Three bioretention cells are proposed within the park area. Runoff from the park will be directed to the bioretention cells where filtered runoff can infiltrate into the native soils. Based on the proposed sizing and contributing drainage area, the bioretention cells would mitigate 2,295m³ of infiltration annually in post-development conditions. A minimum clearance of 1m is provided between the

bottom of the LID and groundwater elevation. In the sizing of the bioretention cells, a minimum infiltration rate of 12mm/hr was assumed with a safety factor of 2 giving a design infiltration rate of 6mm/hr.

• Permeable Pavement

Permeable pavement is proposed within the park area walkways and walkways along the north site boundary. For the park permeable pavement, runoff from the park will be directed to the permeable paver walkways where filtered runoff can infiltrate into the native soils. For the north walkway permeable pavers, single-residential backlots will be directed to the permeable pavement walkway where filtered runoff can infiltration into native soils. Based on the proposed sizing and contributing drainage area, the permeable pavement in the park would mitigate 2,489 m³ of infiltration annually in post-development conditions. Based on the proposed sizing and contributing drainage area, the permeable pavement at the north site boundary would mitigate 2,316 m³ of infiltration annually in post-development conditions. A minimum clearance of 1m is provided between the bottom of the LIDs and groundwater elevation. In the sizing of the permeable pavement, a minimum infiltration rate of 12mm/hr was assumed with a safety factor of 2 giving a design infiltration rate of 6mm/hr.

• Enhanced Topsoil Depth

The fourth mitigation strategy proposed for the Subject Development is the use of enhanced topsoil within pervious areas across the site to promote infiltration. A topsoil depth of 300 mm will be required across the pervious area thereby providing increased opportunities for infiltration in the topsoil layout. The expected increased topsoil depth (300 mm) is expected to reduce runoff volume by 25% based on HSG 'C' type soil as per the TRCA and CVC LID manual. The use of enhanced topsoil would mitigate 6,409 m³ of infiltration annually in post-development conditions.

With the mitigation measures, the following annual runoff is expected in post-development conditions:

- Runoff draining to outlet #1 (CP Trail) decreased by 24% (2,634 m³/year),
- Runoff draining to outlet #2 (north tile drain) increased by 233% (80,244 m³/year),
- Runoff draining to outlet #3 (east tile drain) decreased by 0% (10 m³/year), and,
- Runoff draining to outlet #4 (southeast tile drain) increased by 6% (344 m³/year).

Due to site constraints, the runoff draining to outlet #2 in post-development conditions increased by 233% (by volume) compared to pre-development conditions. Due to the expected increase of runoff volume in post-development conditions, additional studies by a geomorphologist will be explored to analyze the receiving capacity of the northeast wetland.

8.0 UTILITIES

The development will be serviced with natural gas, telephone, cable TV and hydro. All such utilities are available in the area of development. Coordination for extension of and connection to existing services will be undertaken as development approvals advance. Utilities are proposed to follow the alignment of the internal road network, with individual service connections to each lot.

9.0 CONCLUSIONS & RECOMMENDATIONS

Based on the foregoing, we conclude that Glenelg Phase 3 Development can be adequately serviced.

• Access to the Subject Development will be provided by two entrances from Glenelg Residential Development – Phase 2 and one entrance through Bradley Street. The internal roadways will meet Township Standards and provide access for emergency vehicles.

- Gravity sanitary services for the Subject Development will be provided via three connections, one to the White Rose Phase 3 Development and two to the Glenelg Phase 2 Development, further refinement of the sanitary design detailed design may be required to reduce overall site fill requirements.
- An internal watermain will be a looped system and will be provided through two connections at Glenelg Residential Development Phase 2 and one connection at White Rose Phase 3.
- The development will be fully serviced by hydro, natural gas, cable, and telecommunications.
- The proposed LID measures and the Stormwater Management Facility will provide quality control for the subject site. The proposed LID measures and SWM Facility is adequately sized to provide "enhanced protection" level treatment. Quantity control is met for the subject site by controlling post-development flows to pre-development levels for all storms up to the 100-year storm event. The SWM facility will incorporate a minimum 24-hour retention of the 25mm event to provide erosion control.
- Due to site constraints, the runoff draining to outlet #2 in post-development conditions increased by 233% (by volume) compared to pre-development conditions. Due to the expected increase of runoff volume in post-development conditions, additional studies by a geomorphologist will be explored to analyze the receiving capacity of the northeast wetland.
- Natural hazard constraints (floodplain) do not exist within the Subject Development.
- Further study of the impacts to the downstream drainage features including ecological and geomorphological investigations are underway to confirm SWM Facility outfall design.

Based on the above, we recommend approval of the Planning Applications for the Subject Lands from the perspective of engineering servicing requirements.

C.F. CROZIER & ASSOCIATES INC.

C.F. CROZIER & ASSOCIATES INC.

BAU

Justin L'Abbe, E.I.T. Project Coordinator JL'A/AM/KS/AW/NO

b und

Amanda West, P.Eng. Project Engineer

J:\1000\1060-Flato Dev\6220- Glenelg Expansion Lands\Reports\F\$R\$WM\1st Submission\2022.08.31_F\$R\$WM Report.docx

APPENDICES

- Appendix A: Sanitary Demand & WWTP Capacity Calculations
- Appendix B: Water Demand & WTP Capacity Calculations
- Appendix C: Hydrologic Parameter Sheets
- Appendix D: VO6 Model Input & Output Files
- Appendix E: SWM Facility Calculations
- Appendix F: Water Balance Calculations
- Appendix G: Glenelg Phase 2 Lands Design Excerpts

LIST OF FIGURES

- Figure 1: Site Location Plan
- Figure 2: Draft Plan of Subdivision
- Figure 3: Preliminary Grading Plan
- Figure 4: General Site Servicing Plan
- Figure 5: Pre-Development Drainage Plan
- Figure 6: Existing Tile Drains and Pre-Development Drainage
- Figure 7: Conservation Areas and Pre-Development Drainage Plan
- Figure 8: Post-Development Drainage Plan
- Figure 9: Preliminary SWMF #1
- Figure 10:Proposed LID Plan #1

APPENDIX A

Sanitary Demand & WWTP Capacity Calculations

Project: Glenelg Phase 3 Project No.: 1060-6220 Date: 26-Aug-22 By: AM Check: JL'A

	Dundalk Sanitary C	apacity Evaluation					
DESCRIPTION		MARCH 2022	POST WWTP UPGRADES	UNITS			
Available Capacity		1,832	3,025	m3/day			
Average Day Flow		1,165	1,165	m3/day			
Reserve Capacity		667	1,860	m3/day			
Serviced Households		1,144	1,144	ERUs			
Persons Per New Equivalent Residential Unit (20	17 DC Background Study)	2.66	2.66	Persons			
Average New Development Per Capita Flow		0.35	0.35	m3/day			
Equivalent Flow Per Residential Unit		0.931	0.931	m3/day			
Additional ERUs that can be serviced		<u>716</u>	<u>1997</u> ERUs				
TOTAL EQUIVALENT RESIDE	NTIAL UNIT (ERU) SUMMARY	OF OCCUPIDE, COMMIT	TED AND UNCOMMITTED UI	NITS			
DEVELOPMENT	OCCUPIED UNITS 2021	COMMITTED UNITS	UNCOMMITTEI	O UNITS			
White Rose (Phase 1& 2)	63	3	0				
Flato North (Phase 2A)	72	0	0				
Flato North (Phase 3)	42	4	0				
Flato North (Phase 4)	22	0	0				
Flato North (Phase 5)	10	49	0				
Flato North (Phase 6)	68	48	0				
Glenelg (Phase 1)	0	183	0				
Flato West Block 75	0	56	0				
Flato East (Phase 7, 8 & 10)	0	188	0				
Infill Lots	3	3	0				
TOTAL COMMITTED UNITS 2021		<u>534</u>	1463				
White Rose (Phase 3)	0	0	88				
Flato East (Phase 9)	0	0	47				
Flato East (Phase 11)	0	0	193				
Glenelg (Phase 2)	0	0	155				
Dundalk Commercial	0	0	11				
Dundalk North (Glenelg Expansion)	0	0	453				
			<u>1396</u>				
otal Number of Available ERUs Upon Complet	ion of WWTP Upgrades		1997				
Total Projected ERUs of Reserve Capacity Avai	able Upon Occupation of Con	nmitted Units	1463				
Projected ERUs of Reserve Capacity Available	linen Occupation of The Above	e Uncommitted Units	67				

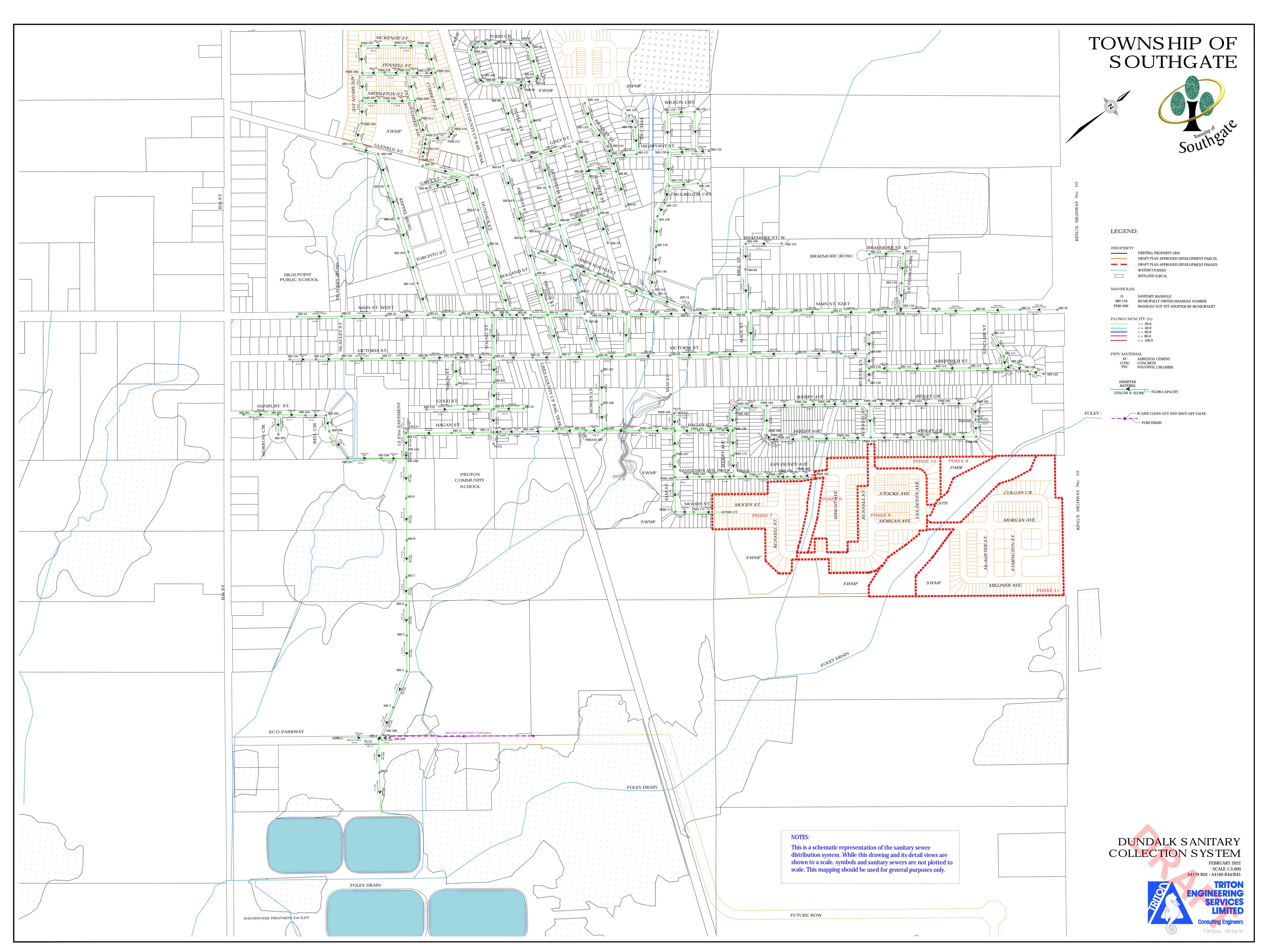
File: 1060-6220 Date: 2022.08.26 By: AM Check By: JL'A

Glenelg Phase 3 Development (Bradley Street Connection) - Sanitary Design Criteria

Developed Site Area		10.38	ha
Number of Residential Units Single Residential Townhouse	TOTAL:	72	units units units
Person Per Unit Residential Population			persons/unit persons
<u>Unit Sewage flows</u> Residential (Per New Development Unit Flow Rates, Triton Engineering Infiltration (typical)	(2022))		L/C-day L/s/ha
<u>Total Design Sewage Flows</u>			
Infiltration/Inflow Residential		1.56	L/sec
Average Daily Residential Flow		2.22	L/sec
Residential Peak Factor (Harmon Formula)		4.0	
Total Peak Daily Flow		10.33	L/sec

CONSULTING ENGINEERS		Date:	1060-6220 2022.08.26 AM JL'A
Glenelg Phase 3 Development (Glenelg Connection)	on) - Sanitary	Design	<u>Criteria</u>
Developed Site Area		12.76	ha
Number of Residential Units Single Residential Semi Townhouse	TOTAL:	18 -	units units units
Person Per Unit Residential Population			persons/unit persons
<u>Unit Sewage flows</u> Residential (Per New Development Unit Flow Rates, Triton Engineerir Infiltration (typical) <u>Total Design Sewage Flows</u>	ng (2022))		L/C-day L/s/ha
Infiltration/Inflow Residential		1.91	L/sec
Average Daily Residential Flow		2.66	L/sec
Residential Peak Factor (Harmon Formula)		3.9	
Total Peak Daily Flow		12.32	L/sec

		1													
	DESIGN: AM CHECK: JL'A SUBMISSION: 1st FSRSWM				Peak Factor Avg. Daily/C Q infiltration	apita Flow =		350	4+(P/1000) L/cap.d L/ha.s	^0.5)		F	N = Population =	0.013 2.66	p.p.u.
		FROM	то	LENGTH	INC. AREA	CUM. AREA	LOTS	INC.	TOTAL	PEAK	AVG. FLOW	MAX FLOW	INFIL.	TOTAL	COMBINED
	CATCHMENT AREA	МН	МН	(m)	(Ha)	(Ha)		POP.	POP.	FACTOR	(L/S)	(L/S)	(L/S)	INFIL.	(L/S)
	1	SAN7-PH2	SAN6-PH2	13.4	0.18	0.18	3	8	8	4.42	0.03	0.14	0.03	0.03	0.17
	2	SAN6-PH2	SAN5-PH2	67.3	0.62	0.8	13	35	43	4.33	0.17	0.75	0.12	0.12	0.87
	3	SAN5-PH2	SAN4-PH2	16.6	0.19	0.99	0	0	43	4.33	0.17	0.75	0.15	0.15	0.89
	4	SAN4-PH2	SAN3-PH2	96.2	0.63	1.62	9	24	67	4.29	0.27	1.16	0.24	0.24	1.40
	5	SAN7-PH2	SAN8-PH2	37	0.19	0.19	4	11	11	4.41	0.04	0.19	0.03	0.03	0.22
	6	SAN8-PH2	SAN9-PH2	67	0.46	0.65	7	19	29	4.36	0.12	0.52	0.10	0.10	0.61
	10	SAN10-PH2	SAN9-PH2	83.3	0.38	0.38	6	16	16	4.39	0.06	0.28	0.06	0.06	0.34
	Phase 3	SANPLUG2-PH3	SAN9-PH2		6.65	6.65	122	325	325	4.06	1.31	5.34	1.00	1.00	6.34
	7	SAN9-PH2	SAN15-PH2	59.7	0.4	8.08	9	24	394	4.03	1.59	6.42	1.21	1.21	7.63
	8	SAN15-PH2	SAN3-PH2	58.9	0.42	8.5	11	29	423	4.01	1.71	6.87	1.28	1.28	8.15
Phase 2	9	SAN3-PH2	SAN2-PH2	80	0.4	10.52	7	19	508	3.97	2.06	8.17	1.58	1.58	9.75
THUSE 2	11	SAN10-PH2	SAN14-PH2	87.7	0.62	0.62	19	51	51	4.31	0.20	0.88	0.09	0.09	0.98
	12	SAN14-PH2	SAN2-PH2	54.1	0.39	1.01	12	32	82	4.27	0.33	1.42	0.15	0.15	1.58
	13	SAN2-PH2	SAN1-PH2	80	0.35	11.88	6	16	606	3.93	2.46	9.65	1.78	1.78	11.44
	Phase 3	SANPLUG1-PH3	SAN11-PH2		6.1	6.1	125	333	333	4.06	1.35	5.47	0.92	0.92	6.38
	14	SAN10-PH2	SAN11-PH2	83.3	0.39	0.39	7	19	19	4.38	0.08	0.33	0.06	0.06	0.39
	19	SANMH13	SAN12-PH2	41.6	0.11	0.11	2	5	5	4.44	0.02	0.10	0.02	0.02	
	17	SAN12-PH2	SAN11-PH2	41.6	0.24	0.24	2 2	5	5	4.44	0.02	0.10	0.04	0.04	0.13
	15	SAN11-PH2	SAN13-PH2	88.1	0.62	7.35	15	40	396	4.02	1.61	6.46	1.10	1.10	7.56
	16	SAN13-PH2	SAN1-PH2	77.7	0.58	7.93	15	40	436	4.00	1.77	7.08	1.19	1.19	8.27
	18	SAN1-PH2	SAN PLUG1	61	0.34	20.15	6	16	1059	3.78	4.29	16.23	3.02	3.02	19.25


GLENELG PHASE 3 RESIDENTIAL DEVELOPMENT - EXTERNAL

	DESIGN: AM CHECK: JL'A SUBMISSION: 1st FSRSWM			Avg. Daily/C	eak Factor (M) = 1+(14/4+(P/1000)^0.5) vg. Daily/Capita Flow = 350 L/cap.d infiltration = 0.15 L/ha.s						N = 0.013 Population = 2.66 p.p.u.					
		FROM	то	LENGTH	INC. AREA	CUM. AREA	LOTS	INC.	TOTAL	PEAK	AVG. FLOW	MAX FLOW	INFIL.	TOTAL	COMBINED	
	CATCHMENT AREA	МН	МН	(m)	(Ha)	(Ha)		POP.	POP.	FACTOR	(L/S)	(L/S)	(L/S)	INFIL.	(L/S)	
	14, 15	SANMH13	SANMH6	83.29	1.18	1.18	11	29	29	4.36	0.12	0.52	0.18	0.18	0.69	
	13	SANMH13	SANMH1	93.96	0.6	0.6	14	37	37	4.34	0.15	0.65	0.09	0.09	0.74	
	1	SANMH1	SANMH2	95.07	0.58	1.18	14	37	74	4.28	0.30	1.29	0.18	0.18	1.47	
	All of Phase 2 and some Phase 3	SANPLUG 1	SANMH2	19	20.15	20.15	0	0	1059	3.78	4.29	16.23	3.02	3.02	19.25	
	2	SANMH2	SANMH3	80	0.79	22.12	12	32	1165	3.76	4.72	17.73	3.32	3.32	21.05	
	16	SANMH14	SANMH6	87.81	0.58	0.58	11	29	29	4.36	0.12	0.52	0.09	0.09	0.60	
	5A	SANMH6	SANMH5A	26.09	0.1	1.86	1	3	61	4.30	0.25	1.06	0.28	0.28	1.34	
	5	SANMH5A	SANMH5	57.2	0.37	2.23	8	21	82	4.27	0.33	1.42	0.33	0.33	1.76	
	4	SANMH5	SANMH4	64.46	0.38	2.61	12	32	114	4.23	0.46	1.96	0.39	0.39	2.35	
	3	SANMH4	SANMH3	64.46	0.26	2.87	7	19	133	4.21	0.54	2.27	0.43	0.43	2.70	
Phase 1	7	SANMH3	SANMH8	80	0.56	25.55	10	27	1325	3.72	5.37	19.95	3.83	3.83	23.78	
	17	SANMH14	SANMH15	87.66	0.64	0.64	12	32	32	4.35	0.13	0.56	0.10	0.10	0.66	
	18	SANMH15	SANMH16	18.59	0.11	0.75	0	0	32	4.35	0.13	0.56	0.11	0.11	0.68	
	19	SANMH16	SANMH12	66.74	0.43	1.18	4	11	43	4.33	0.17	0.75	0.18	0.18	0.92	
	21	SANMH18	SANMH17	25.8	0.33	0.33	6	16	16	4.39	0.06	0.28	0.05	0.05	0.33	
	20	SANMH17	SANMH12	24.74	0.16	0.49	2	5	21	4.38	0.09	0.38	0.07	0.07	0.45	
	12	SANMH12	SANMH11	58.04	0.34	2.01	6	16	80	4.27	0.32	1.38	0.30	0.30	1.68	
	11	SANMH11	SANMH7	58.03	0.32	2.33	5	13	93	4.25	0.38	1.60	0.35	0.35	1.95	
	6	SANMH5	SANMH7	83.29	0.48	0.48	7	19	19	4.38	0.08	0.33	0.07	0.07	0.40	
	10	SANMH7	SANMH10	76.05	0.46	3.27	13	35	146	4.19	0.59	2.49	0.49	0.49	2.98	
	9	SANMH10	SANMH8	76.05	0.43	3.7	13	32	178	4.17	0.72	3.01	0.56	0.56	3.56	
	8 8A	SANMH8 SANMH9	SANMH9 SANMH106	65.5 69.95	0.43 0.45	29.68 30.13	8 8	21 21	1524 1545	3.67 3.67	6.17 6.26	22.69 22.98	4.45 4.52	4.45 4.52	27.14 27.50	
External	0A MH153	SANMH106	SANMH106 SANMH105	65.85	0.45	30.13	0	0	1545	3.67	6.26	22.98	4.52	4.52	27.50	
External	1011135	SANNINITIO	SANIVITIUS	05.65	0.00	30.13	0	0	1545	5.07	0.20	22.90	4.52	4.52	27.50	

GLENELG PHASE 3 RESIDENTIAL DEVELOPMENT - EXTERNAL

NOTE: SANITARY MH 100 SERIES REPRESENT EXTERNAL MANHOLES

DATE:

REVIEWED BY: JL'A

2022.08.26

DOWN STRE		I SEWERV		ANALISI	3 - GLENE	LOFI	IAGE 3			
CATCHMENT AREA	FROM MH	то мн	LENGTH (m)	COMBINED (L/S)	Combined + additional	DIA. (mm)	SLOPE (%)	CAP. (I/s)	VEL. (m/s)	Percent Full
							. ,	. ,	. ,	
Additional flow coming into MH-32	MIL 00			0	0	050	0.05%	00 70	0.04	0%
From Hwy 10	MH-32 MH-31	MH-31 MH-30	93 93	0 0.1	0 0.1	250 250	0.25% 0.26%	29.73 30.32	0.61 0.62	0% 0%
	MH-31 MH-30	MH-30 MH-29	93 99.4	0.1	0.1	250 250	0.26%	30.32 30.32	0.62	2%
	MH-30 MH-29	MH-29 MH-88	105.8	1.2	1.2	250	0.20%	32.02	0.65	4%
Additional flow coming into MH-120 From Braemore St E	MH-120	MH-119	85	0.3	0.3	250	0.28%	31.47	0.64	1%
From Braemore St E	MH-120 MH-119	MH-119 MH-118	05 71.6	0.3	0.3	250 250	0.28%	31.47	0.64	1%
	MH-119 MH-118	MH-88	10.4	0.3	0.3	250	2.03%	32.02 84.73	1.73	0%
			77.4	4.0	4.0	050	0.000/		0.50	
	MH-88	MH-28	77.1	1.6	1.6	250	0.23%	28.52	0.58	6%
	MH-28	MH-27	118.9	1.9	1.9	250	0.42%	38.54	0.79	5%
	MH-27	MH-26	118.6	2.2	2.2	250	0.40%	37.61	0.77	6%
	MH-26	MH-25	119.5	2.4	2.4	250	0.43%	39.00	0.79	6%
	MH-25	MH-22	118.9	2.7	2.7	250	0.45%	39.89	0.81	7%
	MH-22	MH-21	118.6	5.6	5.6	250	1.43%	71.11	1.45	8%
	MH-21 MH-20	MH-20 MH-19	118.3 117.7	5.9 6.2	5.9 6.2	300 300	0.26% 0.45%	49.31 64.87	0.70 0.92	12% 10%
	WII 1-20	WIT-15	117.7	0.2	0.2	300	0.4370	04.07	0.52	1070
Additional flow coming into MH-152	MIL 150	MULTIO	404.0	0.0	0.0	050	0.400/	aa = -	0.70	407
From Braemore St W	MH-152	MH-146	104.2	0.2	0.2	250	0.42%	38.54	0.79	1%
	MH-146	MH-82	74.1	0.4	0.4	250	0.46%	40.33	0.82	1%
	MH-82	MH-49	126.2	0.6	0.6	250	0.27%	30.90	0.63	2%
	MH-49	MH-48	95.7	0.9	0.9	250	0.22%	27.89	0.57	3%
	MH-48	MH-47	94.5	1.2	1.2	250	0.33%	34.16	0.70	4%
Additional flow coming into MH-134										
From Highpoint St	MH-134	MH-133	38	0.1	0.1	200	1.29%	37.25	1.19	0%
	MH-133	MH-130	81.5	0.4	0.4	200	0.59%	25.19	0.80	2%
	MH-130	MH-135	94.1	1.2	1.2	200	0.45%	22.00	0.70	5%
	MH-135	MH-137	57.1	1.5	1.5	200	0.49%	22.96	0.73	7%
	MH-137	MH-138	48.4	1.6	1.6	200	0.37%	19.95	0.64	8%
	MH-138	MH-139	99.2	1.6	1.6	200	0.36%	19.68	0.63	8%
	MH-139	MH-140	61.5	1.6	1.6	200	0.44%	21.76	0.69	7%
	MH-140	MH-141	53.5	1.6	1.6	200	0.41%	21.00	0.67	8%
	MH-141	MH-75	14.4	1.6	1.6	200	0.21%	15.03	0.48	11%
	MH-75	MH-74	91.4	1.8	1.8	200	0.39%	20.48	0.65	9%
	MH-74	MH-47	20.7	2.4	2.4	200	0.77%	28.78	0.92	8%
	MH-47	MH-46	79.3	3.8	3.8	250	0.42%	38.54	0.79	10%
	MH-46	MH-45	71.6	3.9	3.9	250	0.40%	37.61	0.77	10%
	MH-45	MH-19	124.1	4.1	4.1	250	0.40%	37.61	0.77	11%
	MH-19	MH-18	87.8	10.2	10.2	375	0.42%	113.63	1.03	9%
	MH-18	MH-17	110.6	10.7	10.7	375	0.41%	112.27	1.02	10%
Additional flow coming from Glenelg Phase 3					10.33					
From White Rose Phase 3					3.26					
From Bradely St	MH-126	MH-125	64	3.46	13.79	200	0.44%	21.76	0.69	63%
	MH-125	MH-124	75	3.66	13.99	200	0.52%	23.65	0.75	59%
	MH-124	MH-123	36	3.76	14.09	200	0.42%	21.26	0.68	66%
	MH-123	MH-86	43.3	4.36	14.69	200	0.46%	22.24	0.71	66%
	MH-86	MH-85	71.9	4.56	14.89	200	0.47%	22.49	0.72	66%
	MH-85	MH-80	129.5	4.56	14.89	200	0.41%	21.00	0.67	71%
	MH-80	MH-69	112.2	5.46	15.79	200	0.43%	21.51	0.68	73%
Foronto Street to Owen Sound Street Leg	MH-69	MH-68	124.7	9.16	19.49	200	0.37%	19.95	0.64	98%
	MH-68	MH-67	71	9.56	19.89	250	0.23%	28.52	0.58	70%
	MH-67	MH-43	69.8	9.56	19.89	250	0.26%	30.32	0.62	66%
	MH-43	MH-42	112.5	9.66	19.99	250	0.38%	36.66	0.75	55%
	MH-42	MH-17	128.6	10.16	20.49	250	0.43%	39.00	0.79	53%
	MH-17	MH-16	93	17.1	27.43	450	0.40%	180.32	1.13	15%
	MH-16	MH-15	93.9	17.3	27.63	450	0.39%	178.05	1.12	16%

DESIGNED BY: AM

DATE:

REVIEWED BY: JL'A

2022.08.26

DOWN STRE	AM SANITAR	RY SEWER C	APACITY		S - GLENE	LG PI	HASE 3			
	FROM	то	LENGTH	COMBINED	Combined +	DIA.	SLOPE	CAP.	VEL.	
CATCHMENT AREA	MH	МН	(m)	(L/S)	additional	(mm)	(%)	(l/s)	(m/s)	Percent Full
Additional flow coming into MH-153					27.5					
From Glenelg	MH-153	MH-108	65.9	0	27.5	250	0.29%	32.02	0.65	86%
	MH-108	MH-107	100	0	27.5	250	0.30%	32.57	0.66	84%
	MH-107	MH-105	100	0.1	27.6	250	0.30%	32.57	0.66	85%
	MH-105	MH-104	100	0.1	27.6	250	0.30%	32.57	0.66	85%
	MH-104	MH-154	92	0.2	27.7	250	0.30%	32.57	0.66	85%
	MH-154	MH-51	97	0.2	27.7	250	0.30%	32.57	0.66	85%
	MH-51	MH-50	89.6	1.5	29	300	0.15%	37.45	0.53	77%
	MH-50	MH-38	99.1	1.6	29.1	300	0.22%	45.36	0.64	64%
	MH-38	MH-15	122.2	1.9	29.4	300	0.36%	58.02	0.82	51%
	MH-15	MH-83	71.9	25.6	63.43	525	0.39%	268.57	1.24	24%
	MH-83	MH-14	75.9	25.8	63.63	525	0.20%	192.33	0.89	33%
	MH-14	MH-13	68	26.4	64.23	525	0.29%	231.60	1.07	28%
	MH-13	MH-12	126.2	35.9	73.73	525	0.36%	258.04	1.19	29%
	MH-12	MH-11	125.9	36.4	74.23	525	0.37%	261.60	1.21	28%
	MH-11	MH-10A	80.2	36.4	74.23	600	0.22%	288.00	1.02	26%
	MH-10A	MH-10B	13.3	36.5	74.33	600	0.08%	173.67	0.61	43%
From Hanbury St	MH-201	MH-202	100.6	0.3	0.3	200	0.71%	27.64	0.88	1%
	MH-202	MH-204	72.5	0.5	0.5	250	0.28%	31.47	0.64	2%
	MH-204	MH-205	72.8	0.5	0.5	250	0.27%	30.90	0.63	2%
	MH-205	MH206	46.6	0.6	0.6	250	0.28%	31.47	0.64	2%
	MH-206	MH-207	104.2	0.7	0.7	250	0.28%	31.47	0.64	2%
	MH-207	MH-208	82.3	0.8	0.8	250	0.27%	30.90	0.63	3%
	MH-208	MH-10B	82.3	0.8	0.8	250	0.28%	31.47	0.64	3%
	MH-10B	MH-9	95.8	37.3	149.46	600	0.22%	288.00	1.02	52%
	MH-9	MH-8	92.7	37.4	149.56	600	0.25%	307.01	1.09	49%
	MH-8	MH-7	102.7	37.5	149.66	600	0.18%	260.50	0.92	57%
	MH-7	MH-6	104.5	37.6	149.76	600	0.14%	229.74	0.81	65%
	MH-6	MH-5	99.4	37.7	149.86	600	0.22%	288.00	1.02	52%
	MH-5	MH-4	104.6	37.8	149.96	600	0.25%	307.01	1.09	49%
	MH-4	MH-3	111.9	37.9	150.06	600	0.18%	260.50	0.92	58%
	MH-3	MH-2	106.4	38.1	150.26	600	0.24%	300.80	1.06	50%
	MH-2	MH-1	94.8	39.2	151.36	600	0.25%	307.01	1.09	49%
Wastewater Treatment Facility	MH-1	WWTF	110	39.3	151.46	600	0.19%	267.64	0.95	57%
			1			1				1

APPENDIX B

Water Demand & WTP Capacity Calculations

File: 1060-6220 Date: 2022.08.26 By: AM Check By: JL'A

Glenelg Phase 3 Development - Domestic Water Design Criteria

Developed Site Area	25.93 ha
Number of Residential Units- Single Detached	363 units
Number of Residential Units- Semi Detached	18
Number of Residential Units- Townhouse	72 units
Total Number of Units	453 units
Persons Per Unit	2.66 persons/unit
Residential Population	1,205 persons
Domestic Water Design Flows Residential [Per New Development Unit Flow Rates, Triton Engineering (2022)]	279 L/C-day
<u>Total Domestic Water Design Flows</u> Average Residential Daily Flow	3.89 L/sec
Max Day Peak Factor	2.75
Max Day Demand Flow	10.70 L/sec
Peak Hour Factor	4.13
Peak Hour Flow	16.07 L/sec

CROZIER CONSULTING ENGINEERS		Project: Glenelg Expansion Project No.: 1060-6220 Date: 25-Aug-22 By: AM Check: JL'A			
Dundalk Water Sys	stem Capacity Evaluatio	<u>n</u>			
DESCRIPTION		2022	UNITS		
Available Capacity		2,817	m3/day		
Max Day Flow		941	m3/day		
Reserve Capacity		1,876	m3/day		
Serviced Households		1,299	ERUs		
Persons Per Existing Residential Unit (2016 Census Data)		2.6	Persons		
Maximum Day Per Capita Flow		0.279	m3/day		
Persons Per New Equivalent Residential Unit (2017 DC Background S	ŝtudy)	2.66	Persons		
Addditional population that can be served	6724	Persons			
Additional ERUs that can be served	<u>2528</u>	ERUs			
TOTAL EQUIVALENT RESIDENTIAL UNIT (ERU) SUMMA	ARY OF OCCUPIDE, COMM	ITTED AND UNCOM			
DEVELOPMENT	OCCUPIED UNITS 2021	COMMITTED UNITS			
White Rose (Phase 1& 2)	63	3	0		
Flato North (Phase 2A)	72	0	0		
Flato North (Phase 3)	42	4	0		
Flato North (Phase 4)	22	0	0		
Flato North (Phase 5)	10	49	0		
Flato North (Phase 6)	20	48	0		
Glenelg (Phase 1)	0	183	0		
Flato West Block 75	0	56	0		
Flato East (Phase 7, 8 & 10)	0	188	0		
Infill Lots	3	3	0		
TOTAL COMMITTED UNITS 2021		<u>534</u>	0		
White Rose (Phase 3)	0	0	88		
Flato East (Phase 9)	0	0	47		
Flato East (Phase 11)	0	0	193		
Glenelg (Phase 2)	0	0	155		
Dundalk Commercial	0	0	11		
Dundalk North (Glenelg Expansion)	0	0	453		
TOTAL UNCOMMITTED UNITS			<u>1396</u>		
otal Number of Available ERUs			2528		
otal Projected ERUs of Reserve Capacity Available Upon Occupation of Projected ERUs of Reserve Capacity Available Upon Occupation of			1994 598		

APPENDIX C

Hydrologic Parameter Sheets

CROZIER & ASSOCIATES Consulting Engineers	
---	--

Project Name: Glenelg Expansion Lands Project Number: 1060-6220 Date: 2022-08-11 By: KS

D.A. NAME PRE-1 D.A. AREA (ha) 4.32

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment PRE-1
Pre-Dev to CP Trail

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic	% Area	Area
Listowel Silt Loam	LTW	В	100.0%	4.3
				0
				0
				0
Total Area				4.3

Impervious Lar	ndu	ses Prese	nt:										
		Road	way	Sidev	Sidewalk Driveway		Building		SWMF		Subtotals		
Soils		Area	CN	Area	CN	Area	CN	Area (ha)	CN	Area	CN	Area	A*CN
LTW		0	98	0	98	0	98	0.000	98	0	98	0.00	0.00
	0	0	98	0	98	0	98	0	98		98	0	0
	0		98		98		98		98		98	0	0
	0		98		98		98		98		98	0	0
Subtotal Area		0		0		0		0		0			

Pervious Landu	Jses	Present:											
		Wood	land	Mead	dow	Wetland		Lawn		Cultivated		Sub	totals
Soils		Area	CN	Area	CN	Area	CN	Area (ha)	CN	Area	CN	Area	A*CN
LTW Subtotal Area	0 0 0	0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00 0.00		4.3 0.00 0.00 0.00 4.3	74	4.32 0.00 0.00 0.00	319.68 0.00 0.00 0.00
Composite Area Calculations Total Pervious Area Total Impervious Area % Impervious Composite Curve Number							4.3 0.0 0.0% 74.0						
								Total Area	Check			4.3	

Initial Abstraction and Tp Calculations

				-								
Ini	tial Abstrac	ction				Composite Curve Number						
Landuse	IA (mm)	Area	A * IA	Listo	wel Silt		0		0		0	
Lanause		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	0.00	0		0		0		0		0	(
Meadow	8	0	0		0		0		0		0	(
Wetland	16	0	0		0		0		0		0	C
Lawn	5	0	0		0		0		0		0	0.000
Cultivated	7	4	30.24	0.35	4		0		0		0	1.512
Impervious	2	0	0		0		0		0		0	0.000
Composite IA		4.32	7	Compo	osite Runot	ff Coeffic	ent					0.350
	Time	to Peak	Inputs			Uplands B			Bransby Williams Ai			rport
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
Overland	184.5	2	1.08%	2.7	0.28	0.18	0.12	0.12	0.15	0.10	0.54	0.36
	Appropriate calculated time to 0.36 Appropriate Method: Airport											

C	CROZIER & ASSOCIATES
	Consulting Engineers

Project Name: Glenelg Expansion Lands Project Number: 1060-6220 Date: 2022-08-11 By: KS

D.A. NAME PRE-2 D.A. AREA (ha)

13.33

Hydrologic Parameters: CALIB NASHYD Command Pre Development Drainage Area: Catchment PRE-2 Pre-Dev to North Tile

Curve Number Calculation

ſ

Soil Types Present:				
Туре	ID	Hydrologic	% Area	Area
Listowel Silt Loam	LTW	В	100.0%	13.3
				0
				0
				0
Total Area				13.3

Impervious Lar	าปบร	ses Presei	nt:										
		Roadway S		Sidev	Sidewalk		Driveway		Building		٨F	Subtotals	
Soils		Area	CN	Area	CN	Area	CN	Area (ha)	CN	Area	CN	Area	A*CN
LTW		0	98	0	98	0	98	0.000	98	0	98	0.00	0.00
	0	0	98	0	98	0	98	0	98		98	0	0
	0		98		98		98		98		98	0	0
	0		98		98		98		98		98	0	0
Subtotal Area		0		0		0		0		0			

Pervious Landu	Ises	Present:											
		Wood	land	Mead	dow Wetland		land	Lawn		Cultivated		Sub	ototals
Soils		Area	CN	Area	CN	Area	CN	Area (ha)	CN	Area	CN	Area	A*CN
LTW		0.00		0.00		0.00		0.00		13.3	74	13.33	986.42
	0	0.00		0.00		0.00		0.00		0.00		0.00	0.00
	0	0.00		0.00		0.00		0.00		0.00		0.00	0.00
	0	0.00		0.00		0.00		0.00		0.00		0.00	0.00
Subtotal Area		0.00		0.00		0.00		0.00		13.3			
								Total Pervic	ous Area			13.3	
					Co	omposite /	Area	Total Imper	vious Ar	ea		0.0	
					(Calculatic	ons	% Impervious				0.0%	
								Composite Curve Number				74.0	
								Total Area (Check			13.3	

Initial Abstraction and Tp Calculations

Ini	Composite Curve Number											
Landuse	IA (mm)	Area	A * IA	Listowel Silt		0		0		0		
		(ha)	AIA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	0.00	0		0		0		0		0	(
Meadow	8	0	0		0		0		0		0	(
Wetland	16	0	0		0		0		0		0	(
Lawn	5	0	0		0		0		0		0	0.000
Cultivated	7	13	93.31	0.35	13		0		0		0	4.66
Impervious	2	0	0		0		0		0		0	0.000
Composite IA	13.33 7 Composite Runoff Coefficient								0.350			
Time to Peak Inputs						Uplands			Bransby Williams		Airport	
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
Overland	552.64	6	1.09%	2.7	0.28	0.55	0.37	0.37	0.40	0.27	0.93	0.62
	Appropriate calculated time to 0.62 Appropriate Method: Airport								ort			

	&A	SSOCIA Ulting Engir	TES	Project Name: Glenelg Expansion Project Number: 1060-6220 Date: 2022-08-11 By: KS									
Curve Numb	oer Co	alculatior	ı			oment Drai		NASHYD Co ea: Catchme t Tile					
Soil Types Pre	esent:]					
Туре			ID	Hydro			Area						
Listowel Silt Loam			LTW	В	В		3.1						
							0						
							0 0						
Total Area							3.1	1					
Impervious L	.andu	ses Prese	nt:										
		Road		Sidev		Drive	,	Buildir	-				
Soils		Area	CN	Area	CN	Area	CN	Area (ha)	CN	_			
LTW	0	0	98 98	0	98 98	0	98 98	0.000	98 98				
	0 0	0	98 98	0	98 98	0	98 98	0	98 98				
	0		- 70 - 98		- 70 - 98		78 98		70 98				
Subtotal Are	•	0	70	0	/0	0	70	0	/0	1			
Pervious Lan	duses												
		Wood		Mead		Wetl		Lawr					
Soils		Area	CN	Area	CN	Area	CN	Area (ha)	CN	-			
LTW	0	0.00 0.00		0.00 0.00		0.00 0.00		0.00 0.00					
	0	0.00		0.00		0.00		0.00					

Area (ha) CN Area CN Area A*CN 74 225.70 0.00 3.1 3.05 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Subtotal Area 0.00 0.00 0.00 3.1 Total Pervious Area 3.1 Composite Area Total Impervious Area 0.0 0.0% Calculations % Impervious 74.0 Composite Curve Number Total Area Check 3.1

Initial Abstraction and Tp Calculations

Ini	Composite Curve Number												
Landuse	IA (mm)	Area	A*IA	Listowel Silt		0			0		0		
		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC	
Woodland	10	0.00	0		0		0		0		0	(
Meadow	8	0	0		0		0		0		0	(
Wetland	16	0	0		0		0		0		0	C	
Lawn	5	0	0		0		0		0		0	0.000	
Cultivated	7	3	21.35	0.35	3		0		0		0	1.068	
Impervious	2	0	0		0		0		0		0	0.000	
Composite IA	3.05 7 Composite Runo					if Coefficient						0.350	
	Time to Peak Inputs						Uplands Bransby Williams					Airport	
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)	
Overland	158.58	6.5	4.10%	2.7	0.55	0.08	0.05	0.05	0.10	0.07	0.32	0.22	
	Appropriate calculated time to 0.22 Appropriate Method: Airport												

Project Name: Glenelg Expansion Lands D.A. NAME D.A. AREA (ha)

SWMF

Cultivated

Area

0

0

CN

98

98

98

98

PRE-3

3.05

Subtotals

Subtotals

A*CN

0.00

0

0

0

Area

0.00

0

0

0

&AS	OZIER SOCIATES ting Engineers
-----	-------------------------------------

Project Name: Glenelg Expansion Lands Project Number: 1060-6220 Date: 2022-08-11

PRE-4 D.A. NAME D.A. AREA (ha) 2.29

By: KS

Hydrologic Parameters: CALIB NASHYD Command
Pre Development Drainage Area: Catchment PRE-4
Pre-Dev to South Residential

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic	% Area	Area
Listowel Silt Loam	LTW	В	100.0%	2.3
				0
				0
				0
Total Area				2.3

Impervious Land	duses Pres	ent:										
	Roa			Sidewalk Dri		Driveway Building		ng	ng SWMF		Subtotals	
Soils	Area	CN	Area	CN	Area	CN	Area (ha)	CN	Area	CN	Area	A*CN
LTW	0	98	0	98	0	98	0.000	98	0	98	0.00	0.00
	0 0	98	0	98	0	98	0	98		98	0	0
	C	98		98		98		98		98	0	0
	C	98		98		98		98		98	0	0
Subtotal Area	0		0		0		0		0			

Pervious Landu	ses	Present:											
		Woodland		Mead	Meadow		Wetland		Lawn		Cultivated		totals
Soils		Area	CN	Area	CN	Area	CN	Area (ha)	CN	Area	CN	Area	A*CN
LTW Subtotal Area	0 0 0	0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00		2.3 0.00 0.00 0.00 2.3	74	2.29 0.00 0.00 0.00	169.46 0.00 0.00 0.00
					omposite / Calculatic		Total Pervic Total Imper % Impervio Composite	vious Ai us Curve I		2.3 0.0 0.0% 74.0			
								Total Area (Check			2.3	

Initial Abstraction and Tp Calculations

Ini	tial Abstrac	ction				Composite Curve Number						
Landuse	IA (mm)	Area	A * IA	Listo	wel Silt		0		0		0	
Lanause		(ha)		RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	0.00	0		0		0		0		0	(
Meadow	8	0	0		0		0		0		0	(
Wetland	16	0	0		0		0		0		0	C
Lawn	5	0	0		0		0		0		0	0.000
Cultivated	7	2	16.03	0.35	2		0		0		0	0.802
Impervious	2	0	0		0		0		0		0	0.000
Composite IA		2.29	7	Compo	osite Runot	ff Coeffic	ient					0.350
				-								
	Time	to Peak	Inputs			Uplands Bransby Williams			Williams	s Airport		
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
Overland	208.86	2	0.96%	2.7	0.26	0.22	0.15	0.15	0.18	0.12	0.60	0.40
	Appropriate calculated time to 0.40 Appropriate Method: Airport											

&AS	OZIER SOCIATES ting Engineers
-----	-------------------------------------

Project Name: Glenelg Expansion Lands Project Number: 1060-6220 Date: 2022-08-11 By: KS

D.A. NAME PRE-5 3.00

A*CN

A*CN 222.00

0.00 0.00 0.00

A*RC

0 0

0

0.000 1.050

0.000

0.350

Tp(hr)

0.17

D.A. AREA (ha)

						nage Are	NASHYD C ea: Catchm east Tile					
Curve Number	Calculatior	ı										
Soil Types Prese	nt:						1				`	
Туре		ID	Hydro	logic	% Area	Area						
Listowel Silt Loa	m	LTW	В		100.0%	3.0 0 0						
Total Area						0 3.0						
		-										
Impervious Land	<u>duses Prese</u> Road		Sidev	walk	Drive		Build	ina	SW	ME	Sub	ototals
Soils	Area	CN	Area	CN	Area	CN	Area (ha)		Area	CN	Area	A*C
LTW	0	98	0	98	0	98	0.000	98	0	98	0.00	0.0
	0 0	98 98	0	98 98	0	98 98	0	98 98		98 98	0 0	0 0
Subtotal Area	0	98	0	98	0	98	0	98	0	98	0	0
Pervious Landus	ses Present:											
	Wood		Mea	dow	Weth	and	Lav	vn	Cultiv	ated	Sub	ototals
Soils	Area	CN	Area	CN	Area	CN	Area (ha)	CN	Area	CN	Area	A*C
LTW	0.00		0.00		0.00		0.00		3.0	74	3.00	222.
	0 0.00		0.00		0.00		0.00		0.00		0.00	0.0
	0 0.00		0.00		0.00		0.00		0.00		0.00	0.0
Subtotal Area	0 0.00 0.00		0.00 0.00		0.00 0.00		0.00 0.00		0.00 3.0		0.00	0.0
							Total Perv				3.0	
					omposite A		Total Impe		rea		0.0	
					Calculatio	ns	% Impervi				0.0%	
							Composit Total Arec		Number		74.0 3.0	
Initial Abstractic	on and In (`alculati	0.05					CHECK			5.0	
	_		ons									
Ini	itial Abstrac							osite Cu	rve Numb			
Landuse	IA (mm)	Area (ha)	A*IA	Listo RC	wel Silt Area	RC	0 Area	RC	0 Area	RC	0 Area	A*R
Woodland	10	0.00	0	- KC	0		0	- RO	0	KC	0	7.1
Meadow	8	0	0		0		0		0		0	
Wetland	16	0	0		0		0		0		0	
Lawn	5	0	0		0		0		0		0	
Cultivated	7	3	21	0.35	3		0		0		0	
Impervious	2	0	0	Company	0 O	it Cooffic	0		0		0	
Composite IA		3.00	7	Compo	osite Runof	T Coeffic	cient					
	Time	to Peak	Inputs				Uplands		Bransby	Williams	Ai	rport
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(ł
Overland	105.7	4.5	4.26%	2.7	0.56	0.05	0.04	0.04	0.07	0.05	0.26	0.1
	Approprie	ate calc	ulated tin	ne to	0.17	Appropr	iate Metho	od:	Airp	ort		
						<u> </u>	-					

PROJECT: Glenelg Expansion Lands PROJECT No.: 1060-6220 FILE: Post-Development Breakdown DATE: 2022.08.22 DESIGN: K. Swain CHECK: A. West

<u>Drainage Areas</u>

Post-Development Breakdown

Description	Area (sqm)	Area (ha)	Runoff Coeff.	TIMP	A*TIMP	XIMP	A*XIMP
Single Family Residential	96660	9.67	0.59	55%	5.32	45%	4.35
Semi-Detached Residential	4751	0.48	0.66	65%	0.31	45%	0.21
Townhouses	16596	1.66	0.73	75%	1.24	55%	0.91
SWM Facility	14329	1.43	0.55	50%	0.72	50%	0.72
Park	13915	1.39	0.30	14%	0.20	14%	0.19
Roads	76081	7.61	0.75	79%	5.98	79%	5.98
Walkways	3441	0.34	0.90	100%	0.34	100%	0.34
Total	259900	25.99	0.63	62%	16.05	52%	13.51

8	ASSOCIATES
---	------------

Project Name: Glenelg Expansion Lands Project Number: 1060-6220 Date: 2022-08-11 By: KS

NYHD185

D.A. AREA (ha) 1.66

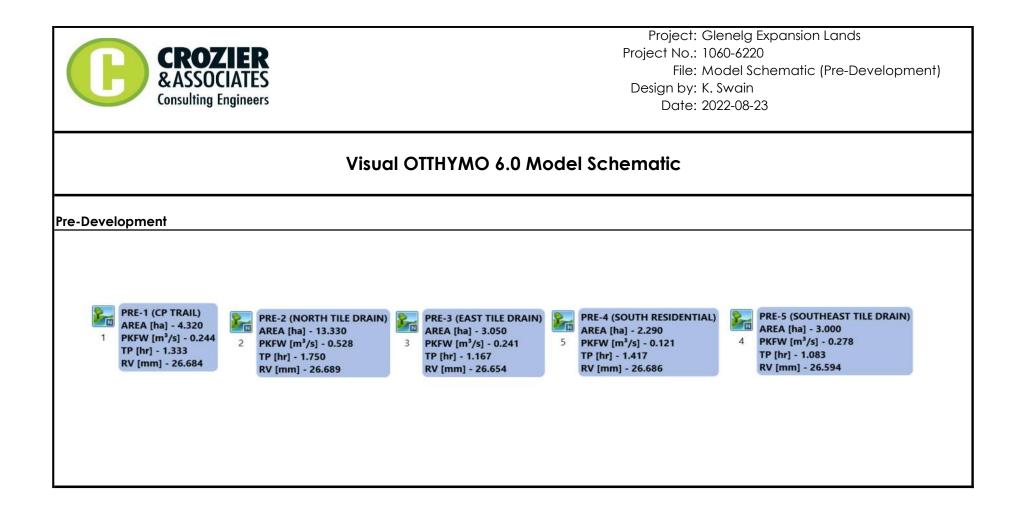
D.A. NAME

Hydrologic Parameters: CALIB NASHYD Command Post-Development Drainage Area: Catchment NYHD185 Draining to Bioretention and PP

Curve Number Calculation

Soil Types Present:				
Туре	ID	Hydrologic	% Area	Area
Listowel Silt Loam	LTW	В	100.0%	1.7
				0
				0
				0
Total Area				1.7

Impervious Landuses Present:													
		Roadway		Sidewalk		Driveway		Building		SWMF		Subtotals	
Soils		Area	CN	Area	CN	Area	CN	Area (ha)	CN	Area	CN	Area	A*CN
LTW		0	98	0.01447	98	0.05788	98	0.217	98	0	98	0.29	28.36
	0	0	98	0	98	0	98	0	98		98	0	0
	0		98		98		98		98		98	0	0
	0		98		98		98		98		98	0	0
Subtotal Area		0		0.01447		0.05788		0.21705		0			


Pervious Landu	Jses	Present:											
		Wood	land	Mead	wob	Wet	and	Lawr	ו	Cultiv	ated	Sub	totals
Soils		Area	CN	Area	CN	Area	CN	Area (ha)	CN	Area	CN	Area	A*CN
LTW		0.00		0.00		0.00		1.27	69	0.0	74	1.27	87.42
	0	0.00		0.00		0.00		0.00		0.00		0.00	0.00
	0	0.00		0.00		0.00		0.00		0.00		0.00	0.00
	0	0.00		0.00		0.00		0.00		0.00		0.00	0.00
Subtotal Area		0.00		0.00		0.00		1.27		0.0			
								Total Pervic	ous Arec	1		1.3	
					Co	mposite /	Area	Total Imper	vious Ai	rea		0.4	
					(Calculatic	ons	% Impervio	US			23.9%	
								Composite	Curve	Number		69.6	
								Total Area (Check			1.7	

Initial Abstraction and Tp Calculations

Ini	itial Abstrac	ction					Comp	osite Cur	ve Numb	er		
Landuse	IA (mm)	Area	A*IA	Listo	wel Silt		0		0		0	
Lanause	IA (IIIII)	(ha)	AIA	RC	Area	RC	Area	RC	Area	RC	Area	A*RC
Woodland	10	0.00	0		0		0		0		0	(
Meadow	8	0	0		0		0		0		0	(
Wetland	16	0	0		0		0		0		0	(
Lawn	5	1.2669	6.3345	0.25	1.3		0		0		0	0.312
Cultivated	7	0	0		0		0		0		0	0.000
Impervious	2	0.2894	0.5788	0.90	0.29		0		0		0	0.260
Composite IA		1.56	4.44214	Compo	osite Runot	f Coeffici	ent					0.342
	Time	to Peak	Inputs				Uplands		Bransby	Williams	Ai	rport
Flow Path Description	Length (m)	Drop (m)	Slope (%)	V/S ^{0.5}	Velocity (m/s)	Tc (hr)	Tp(hr)	TOTAL Tp (hr)	Tc (hr)	Tp(hr)	Tc (hr)	Tp(hr)
Overland	121	2.42	2.00%	2.7	0.38	0.09	0.06	0.06	0.10	0.06	0.36	0.24
	Approprie	ate calci	ulated tim	e to	0.24	Appropri	ate Metho	d:	Airp	ort		

APPENDIX D

VO6 Model Input & Output Files

	ac87f79d-69e0-48a7-b484-801844eb7b93\a4c52d15 Ptotal= 24.99 mm Comments: 25mm
V V I SSSSS U U A L (V 6.2.2008) V V I SS U U A A L	TIME RAIN TIME RAIN 'TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr
V V I SS U U AAAAA L V V I SS U U A A L VV I SSSS UUUU A A LLLLL	0.00 1.36 1.00 6.91 2.00 4.18 3.00 1.86 0.08 1.45 1.08 11.02 2.08 3.77 3.08 1.78 0.17 1.55 1.17 26.16 2.17 3.43 3.17 1.71
000 TTTTT TTTTT H H Y Y M M 000 TM	0.25 1.67 1.25 76.07 2.25 3.16 3.25 1.64 0.33 1.81 1.33 33.71 2.33 2.92 3.33 1.58
00TTHHYYMMM00 00TTHHYYMM00 000TTHHYMM000	0.42 1.99 1.42 18.64 2.42 2.72 3.42 1.52 0.50 2.20 1.50 12.61 2.50 2.55 3.50 1.47 0.58 2.47 1.58 9.46 2.58 2.39 3.58 1.43
Developed and Distributed by Smart City Water Inc Copyright 2007 - 2021 Smart City Water Inc	0.67 2.82 1.67 7.55 2.67 2.26 3.67 1.38 0.75 3.29 1.75 6.28 2.75 2.14 3.75 1.34
All rights reserved.	0.83 3.97 1.83 5.38 2.83 2.04 3.83 1.30 0.92 5.03 1.92 4.70 2.92 1.94 3.92 1.26
***** DETAILED OUTPUT *****	
Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat	 CALIB NASHYD (0001) Area (ha)= 4.32 Curve Number (CN)= 74.0
Output filename: C:\Users\kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\6f6bb	ID= 1 DT= 5.0 min Ia (mb)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.36
d7d-7403-423d-925d-c82993f4def1\scena Summary filename: C\learney works and the call civics \\UE\Ec70666 3E16 43E0 0cc0 316601000443\666bb	Unit Hyd Qpeak (cms)= 0.458
C:\Users\kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\6f6bb d7d-7403-423d-925d-c82993f4def1\scena	PEAK FLOW (cms)= 0.024 (i) TIME TO PEAK (hrs)= 1.917
DATE: 08-23-2022 TIME: 11:44:29	RUNOFF VOLUME (mm)= 3.018 TOTAL RAINFALL (mm)= 24.991
USER:	RUNOFF COEFFICIENT = 0.121 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
COMMENTS:	
	NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 - -
**************************************	Unit Hyd Qpeak (cms)= 0.821
	PEAK FLOW (cms)= 0.054 (i) TIME TO PEAK (hrs)= 2.250
READ STORM Filename: C:\Users\kswain\AppD	RUNOFF VOLUME (mm)= 3.018 TOTAL RAINFALL (mm)= 24.991
ata\Local\Temp\	RUNOFF COEFFICIENT = 0.121
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	RUNOFF COEFFICIENT = 0.121 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB AASHYD (0003) Area (ha)= 3.05 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB ASSHYD (0003) Area (ha)= 3.05 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.22	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB NASHYD (0003) Area (ha)= 3.05 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.22 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.022 (i)	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB NASHYD (0003) Area (ha)= 3.05 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.022 (i) TIME TO PEAK (hrs)= 1.667 RUNOFF VOLUME (mm)= 3.014 TOTAL RAINFALL (mm)= 24.991 RUNOFF COEFFICIENT = 0.121 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB Area (ha)= 3.05 Curve Number (CN)= 74.0 ID=1DT=5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.530 0.22 (i) 10 11 1667 RUMOFF VOLUME (mm)= 3.014 107AL RAINFALL (mm)= 24.991 RUMOFF COEFFICIENT = 0.121 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALIB Area (ha)= 3.00 Curve Number (CN)= 74.0	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB Area (ha)= 3.05 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.530 # of Linear Res.(N)= 3.00 PEAK FLOW (cms)= 0.622 (i) TIME TO PEAK (hrs)= 1.667 RUNOFF VOLUME (mm)= 2.014 TOTAL RAINFALL (mm)= 24.991 RUNOFF COEFFICIENT = 0.121 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALIB Area (ha)= 3.00 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.674 PEAK FLOW (cms)= 0.024 (i)	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB Area (ha)= 3.05 Curve Number (CN)= 74.0 NASHYD (0003) Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.022 (i) Inm)= 7.00 TIME TO PEAK (hrs)= 1.667 RUNOFF VOLUME (mm)= 3.014 TOTAL RAINFALL (mm)= 24.991 RUNOFF COEFFICIENT = 0.121 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALIB Area (ha)= 3.00 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.674 PEAK FLOW (cms)= 0.674 PEAK FLOW (cms)= 0.624 (i) IIM TIME TO PEAK (hrs)= 1.583 RUNOFF VOLUME (mm)= 3.007 TOTAL RAINFALL (mm)= 2.007	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB Area (ha)= 3.05 Curve Number (CN)= 74.0 NASHYD (0003) Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.022 (i) Inm)= 7.00 TIME TO PEAK (hrs)= 1.667 RUNOFF VOLUME (mm)= 3.014 TOTAL RAINFALL (mm)= 24.991 RUNOFF COEFFICIENT = 0.121 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALIB Area (ha)= 3.00 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.674 PEAK FLOW (cms)= 0.674 PEAK FLOW (cms)= 0.624 (i) IIM TIME TO PEAK (hrs)= 1.583 RUNOFF VOLUME (mm)= 3.007 TOTAL RAINFALL (mm)= 2.007	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB Area (ha)= 3.05 Curve Number (CN)= 74.0 ID=1 DT=5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.022 (i) TIME TO PEAK (hrs)= 1.667 RUNOFF VOLUME (mm)= 3.04 TOTAL RAINFALL (mm)= 24.991 RUNOFF COEFFICIENT = 0.121 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB Area (ha)= 3.05 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.530 0.22 intervent 0.10 3.00 PEAK FLOW (cms)= 0.022 (i) 1	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB Area (ha)= 3.05 Curve Number (CN)= 74.0 ID=1 DT=5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.022 (i) TIME TO PEAK (hrs)= 1.667 RUNOFF VOLUME (mm)= 3.014 TOTAL RAIMFALL (mm)= 24.991 RUNOFF COEFFICIENT = 0.121 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB Area (ha)= 3.05 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.022 (i) TIME TO PEAK (hrs)= 1.667 RUMOFF VOLUME (mm)= 3.014 TOTAL RAINFALL (mm)= 24.991 RUMOFF COEFFICIENT = 0.121 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALIB Area (ha)= 3.00 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.674 PEAK FLOW (cms)= 0.024 (i) TIME TO PEAK (hrs)= 1.583 RUMOFF VOLUME (mm)= 3.007 Unit Hyd Qpeak (cms)= 0.024 (i) TIME TO PEAK (hrs)= 1.583 RUMOFF VOLUME (mm)= 3.007 TOTAL RAINFALL (mm)= 24.991 RUMOFF VOLUME (mm)= 3.007 TOTAL RAINFALL (mm)= 24.991 RUMOFF VOLUME (mm)= 3.007 TOTAL RAINFALL (mm)= 24.991 RUMOFF COEFFICIENT = 0.120 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALIB Area (ha)= 2.29 Curve Number (CN)= 74.0 NASHYD (0005) Area (ha)= 2.29 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 Unit Hyd Qpeak (cms)= 0.219 Unit Hyd Qpeak (cms)= 0.219	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

V V I SSSSS U U A L (v 6.2.2008) V V I SS U U A A L V V I SSSS UUUUU A A LLLLL 000 TITITI TITIT H H Y Y M M 000 TM 0 0 T T H H Y Y M M 00 0 0 T T H H Y M M 0 0 0 00 T T H H Y M M 0 0 000 T T H H Y M M 0 00 000 T T H H Y M M 0 00 000 T T H H Y M M 0 00 000 T T H H Y M M 0 00 000 T T H H Y M M 0 00 100 T T T H H Y M M 0 00 100 T T T H H Y M M 0 0 0 100 T T T H H Y	used in: INTENSITY = A / (t + B)^C Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.33 TIME RAIN TIME RAIN ' TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.00 3.76 0.83 80.82 1.67 5.83 2.50 3.63 0.17 4.42 1.00 17.11 1.83 5.15 2.50 3.63 0.33 5.48 1.17 10.79 2.00 4.63 2.83 3.20 0.50 7.50 1.33 8.23 2.17 4.23 0.67 13.95 1.50 6.78 2.33 3.90
***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\V02\voin.dat Output filename: :\Users\Kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\led6f fc-248e-41ed-aed5-12089c5bbc2f\scena :\Users\Kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\led6f fc-248e-41ed-aed5-12089c5bbc2f\scena MTE: 08-23-2022 TIME: 11:41:13 ISER:	CALIB Area (ha)= 4.32 Curve Number (CN)= 74.0 NASHYD (0001) Area (ma)= 7.00 # of Linear Res.(N)= 3.00 ID= 1DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr 0.83 3.76 0.833 13.95 1.583 6.78 2.33 4.23 0.167 3.76 0.917 80.82 1.750 5.83 2.50 3.90 0.250 4.42 1.000 80.82 1.750 5.83 2.58 3.63 0.417 5.48 1.167 17.11 1.917 5.15 2.67 3.63 0.500 5.48 1.250 10.79 2.000 5.15 2.75 3.39 0.566 7.50 1.417 8.23 2.167 4.63 2.92 3.20 0.667 7.50 1.417 8.23 2.167 4.63 2.92 3.20
OMMENTS:	Unit Hyd Qpeak (cms)= 0.458 PEAK FLOW (cms)= 0.044 (i) TIME TO PEAK (hrs)= 1.417 RUNOFF VOLUME (mm)= 5.521 TOTAL RAINFALL (mm)= 32.132 RUNOFF COEFFICIENT = 0.172 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 III (mm)= 7.00 # of Linear Res.(N)= 3.00 III (mm)= 7.00 # of Linear Res.(N)= 3.00 IIII (mm)= 7.00 # of Linear Res.(N)= 3.00 IIII (mm)= 7.00 # of Linear Res.(N)= 3.00 IIII TIME RAIN TIME RAIN TIME RAIN TIME RAIN mn/hr hrs mn/hr INTER RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN mn/hr hrs mn/hr 0.083 3.76 0.833 1.583 6.78 2.42 3.90 0.250 4.42 1.000 80.82 1.750 5.83 2.58 3.63 0.167 3.76 0.917 80.82 1.750 5.83 2.58 3.63 0.90 0.333 4.21 1.000 80.82 1.750 5.83	0.583 7.50 1.333 10.79 2.083 4.63 2.83 3.39 0.667 7.50 1.417 8.23 2.167 4.63 2.92 3.20 0.750 13.95 1.500 8.23 2.250 4.23 3.00 3.20 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.041 (1) TIME TO PEAK (hrs)= 1.250 RUNOFF VOLUME (mm)= 5.515 TOTAL RAINFALL (mm)= 32.132 RUNOFF COEFFICIENT = 0.172 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

1 DT= 5.0 min	Ia	(ha)= (mm)= (hrs)=	7.00	Curve Num # of Line	oer (Cl ar Res.(I	N)= 74.0 N)= 3.00	
NOTE: RAINF	ALL WAS T	RANSFORM	ED TO	5.0 MIN.	TIME STE	P.	
		TR	ANSFORM	D HYETOGR	АРН		
TIME	RAIN mm/hr	TIME	RAIN	' TIME ' hrs	RAIN		
0.083	3.76	0.833	13.95	1.583 1.667	6.78		
0.167	3.76	0.917	80.82	1.667	6.78	2.42	3.90
0.250	4.42	1.000	80.82	1.750 1.833 1.917	5.83	2.50	3.90
0.417	5.48	1.167	17.11	1.917	5.15	2.67	3.63
0.500	5.48	1.250	10.79	2.000	5.15	2.75	3.39
0.583	7.50	1.333	8.23	2.083	4.63	2.83	3.39
0.750	13.95	1.500	8.23	2.000 2.083 2.167 2.250	4.23	3.00	3.20
Unit Hyd Opeak	(cms)=	0.219					
TOTAL RAINFALL RUNOFF COEFFICIE (i) PEAK FLOW DO	NT =	0.172	SEFLOW :	EF ANY.			

V V I SSSSS U U A L (v 6.2.2008) V V I SS U U AA L V V I SS U U AAA L V V I SS U U AAAA L VV I SS U U AAA L VV I SSSS UUUUU A A LLLLL 000 TITIT TITIT H H Y Y M M 000 TM 0 0 T T H H Y Y MM MM 0 0 0 0 T T H H Y Y MM MM 0 0 0 0 T T H H Y M M 000 000 T T H H Y M M 000 Developed and Distributed by Smart City Water Inc Copyright 2007 - 2021 Smart City Water Inc All rights reserved.	used in: INTENSITY = A / (t + B)^C Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.33 TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.00 4.98 0.83 107.07 1.67 7.72 2.50 4.80 0.17 5.86 1.00 22.67 1.83 6.82 2.57 4.50 0.33 7.26 1.17 14.30 2.00 6.14 2.83 4.24 0.50 9.93 1.33 10.90 2.17 5.60 0 0.67 18.47 1.59 8.98 2.33 5.16
<pre>***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Output filename: C:\Users\Kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\6363c f35-5dd6-44fd-aaa1-674dc05eef3c\scena Summary filename: C:\Users\Kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\6363c f35-5dd6-44fd-aaa1-674dc05eef3c\scena DATE: 08-23-2022 TIME: 11:41:14 JSER:</pre>	[CALIB [ARSHYD (0001) Area (ha)= 4.32 Curve Number (CN)= 74.0 [ID=1 DT=5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.36 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN TIME RAIN 'ITME RAIN TIME RAIN HTME RAIN TIME RAIN 'ITME RAIN 'ITME RAIN HTME RAIN 'ITME RAIN 'ITME RAIN 'ITME RAIN 0.833 18.47 1.583 8.98 2.33 5.60 0.063 4.98 0.833 18.47 1.583 8.98 2.33 5.60 0.067 5.86 1.000 107.07 1.667 8.98 2.42 5.16 0.250 5.86 1.000 107.07 1.750 7.72 2.50 5.16 0.333 5.86 1.083 2.67 1.813 7.72 2.54 5.16 0.333 5.86 1.683 2.67 1.833 7.72 2.58 <
COMMENTS:	0.583 9.93 1.333 14.30 2.083 6.14 2.83 4.50 0.667 9.93 1.417 10.90 2.167 6.14 2.92 4.24 0.750 18.47 1.500 10.90 2.250 5.60 3.00 4.24 Unit Hyd Qpeak (cms)= 0.458 PEAK FLOW (cms)= 0.086 (i) TIME TO PEAK (hrs)= 1.417 RUNOFF VOLUME (mm)= 10.132 TOTAL RAINFALL (mm)= 42.565 RUNOFF COEFFICIENT = 0.238 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN ITIME RAIN ' TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.083 4.98 0.933 18.47 1.583 8.98 2.33 5.60 0.167 4.98 0.917 107.07 1.667 8.98 2.43 5.16 0.250 5.86 1.000 107.07 1.750 7.72 2.58 4.80 0.417 7.26 1.167 22.67 1.833 7.72 2.58 4.80 0.417 7.26 1.167 22.67 1.917 6.82 2.67 4.80	0.583 9.93 1.333 14.30 2.083 6.14 2.83 4.50 0.667 9.93 1.417 10.90 2.167 6.14 2.92 4.24 0.750 18.47 1.500 10.90 2.250 5.60 3.00 4.24 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.081 (i) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLVME (mm)= 10.121 TOTAL RAINFALL (mm)= 42.565 RUNOFF COEFFICIENT = 0.238 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
0.500 7.20 1.530 14.30 21000 6.32 27.3 4.30 0.583 9.93 1.333 14.30 21000 6.14 2.33 4.50 0.667 9.93 1.417 10.90 2.167 6.14 2.92 4.24 0.750 18.47 1.500 10.90 2.250 5.60 3.00 4.24 Unit Hyd Qpeak (cms)= 0.821	NASHYD (0004)] Area (ha)= 3.00 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(INS)= 0.17 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN TIME RAIN ' TIME RAIN N' TIME RAIN N' TIME RAIN N' TIME RAIN N'
NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN	Unit Hyd Qpeak (cms)= 0.674 PEAK FLOW (cms)= 0.093 (i) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 10.098 TOTAL RAINFALL (mm)= 42.565 RUNOFF COEFFICIENT = 0.237

SHYD (0005) 1 DT= 5.0 min	Ia	(mm)=	7.00	# of Line	ber (CP ar Res.(P	I)= 74.0 I)= 3.00	
NOTE: RAINF	ALL WAS T	RANSFORM	ED TO	5.0 MIN.	TIME STEF	••	
				ED HYETOGR			
				TIME			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	
0.083	4.98	0.833	18.47	1.583	8.98	2.33	5.60
0.16/	4.98	0.91/	107.07	1.66/	8.98	2.42	5.16
0.250	5.86	1.000	10/.0/	1.383 1.667 1.750 1.833 1.917 2.000 2.083 2.167	7 72	2.50	3.10
0.333	5.80	1 167	22.0/	1 017	6.82	2.58	4.80
0.41/	7.20	1.10/	22.0/	1.91/	6 92	2.0/	4.80
0.500	0 0 0 0	1 332	14.30	2.000	6 1/	2.1/2	4.50
0.563	9.95	1 /17	10 90	2.005	6 14	2.05	4.50
0.007	18 47	1 500	10.90	2.250	5 60	3 00	4.24
01750	10117	1.500	10.50	1 21230	5100 1	5.00	
Unit Hyd Qpeak	(cms)=	0.219					
PEAK FLOW TIME TO PEAK RUNOFF VOLUME	(cms)= ((hrs)= :	0.042 (i 1.500	.)				
RUNOFF VOLUME	(mm)= 10	0.133					
TOTAL RAINFALL	(mm)= 43	2.565					
RUNOFF COEFFICIE	NT = 0	0.238					
(
(i) PEAK FLOW DO	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(i) PEAK FLOW DO	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	CF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(İ) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(İ) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(İ) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(İ) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	EF ANY.			
(İ) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	IF ANY.			
(İ) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DC	ES NOT IN	CLUDE BA	SEFLOW :	IF ANY.			

V V I SSSSS U U A L (v 6.2.2008) V V I SS U U AA L V V I SS U U AAAA L V V I SS U U AAAAA L V V I SS U U A A L V V I SSSSS UUUUU A A LLLLL 000 TITIT TITIT H H Y Y M M 000 TM 0 0 T T H H Y Y MM MM 0 0 0 0 T T H H Y Y MM MM 0 0 0 0 T T H H Y M M 0 0 000 T T H H Y M M 0 00 000 T T H H Y M M 0 00 000 T T H H Y M M 0 00 000 T T H H Y M M 0 00 000 T T H H Y M M 0 00 1000 T T H H Y M M 0 0 0 1000 T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0 1000 T T T H H Y M M 0 0	used in: INTENSITY = A / (t + B)^C Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.33 TIME RAIN TIME RAIN 'TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.00 5.79 0.83 124.56 1.67 8.98 2.50 5.59 0.17 6.82 1.00 26.38 1.83 7.93 2.67 5.23 0.33 8.45 1.17 16.63 2.00 7.14 2.83 4.93 0.50 11.56 1.33 12.68 2.17 6.51 0.67 21.49 1.50 10.45 2.33 6.01
<pre>***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Output filename: C:\Users\Kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\26c8c H4b-b0a5-4ee8-938e-92ef2ca0db10\scena Summary filename: C:\Users\Kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\26c8c</pre>	CALIB NASHYD (0001) Area (ha)= 4.32 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.36 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN AND TIME RAIN 'TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr 'hrs mm/hr hrs mm/hr
14b-b0a5-4ee8-938e-92ef2ca0db10\scena DATE: 08-23-2022 TIME: 11:41:14 JSER: COMMENTS:	0.083 5.79 0.833 21.49 1.583 10.45 2.33 6.51 0.167 5.79 0.917 124.56 1.667 10.45 2.42 6.01 0.250 6.82 1.000 124.56 1.750 8.98 2.50 6.01 0.333 6.82 1.083 26.38 1.833 8.98 2.58 5.59 0.417 8.45 1.167 26.18 1.917 7.93 2.67 5.59 0.500 8.45 1.250 16.63 2.000 7.93 2.75 5.23 0.583 11.56 1.333 16.63 2.003 7.14 2.83 5.23 0.667 11.56 1.417 12.68 2.167 7.14 2.92 4.93 0.750 21.49 1.500 12.68 2.250 6.51 3.00 4.93
** SIMULATION : C. 10yr 3hr 10min Chicago ** **********************************	PEAK FLOW (cms)= 0.119 (i) TIME TO PEAK (hrs)= 1.417 RUNOFF VOLUME (mm)= 13.718 TOTAL RAINFALL (mm)= 49.520 RUNOFF COEFFICIENT = 0.277 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
	0.583 11.56 1.333 16.63 2.083 7.14 2.83 5.23 0.667 11.56 1.417 12.68 2.167 7.14 2.92 4.93 0.750 21.49 1.500 12.68 2.250 6.51 3.00 4.93 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.115 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 49.520 RUNOFF COEFFICIENT = 0.277 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
MASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 MASHYD (0002) Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hos3 5.79 0.833 21.49 0.683 5.79 0.632 1.060 124.56 0.167 5.79 0.917 124.56 1.667 0.250 6.82 0.628 1.080 2.458 0.333 6.82 1.083 2.638 0.417 8.45 1.167 2.638 0.500 8.45 1.250 16.63 2.080 0.417 8.45 1.417 12.68 2.167 5.23 0.500 8.45 1.250 16.63 2.080 7.14 2.83 5.23 0.517 0.521.49 1.500 12.68 2.250 6.51 3.00 4.93	0.667 11.56 1.417 12.68 2.167 7.14 2.92 4.93 0.750 21.49 1.500 12.68 2.250 6.51 3.00 4.93 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.115 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 13.703 TOTAL RAINFALL (mm)= 49.520 RUNOFF COEFFICIENT = 0.277 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALIB NASHYD (0004) Area (ha)= 3.00 Curve Number (CN)= 74.0 ID= 1DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.17 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN N hrs mm/hr Thes mm/hr hrs mm/hr
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN hrs <mm hr<="" td=""> hrs<mm hr<="" td=""> 'hrs<mm hr<="" td=""> hrs<mm hr<="" td=""> 0.883 5.79 0.833 21.49 1.583 10.45 2.33 6.51 0.6250 6.82 1.000 124.56 1.750 8.98 2.50 6.01 0.333 6.82 1.083 26.38 1.833 8.98 2.55 5.59 0.500 8.45 1.250 16.63 2.000 7.93 2.75 5.23 0.583 11.56 1.331 16.63 2.083 7.14 2.83 5.23 0.667 11.56 1.417 12.68 2.167 7.14 2.92 4.93 0.750 21.49 1.500 12.68 2.250 6.51 3.00 4.93</mm></mm></mm></mm>	0.667 11.56 1.417 12.68 2.167 7.14 2.92 4.93 0.750 21.49 1.500 12.68 2.250 6.51 3.00 4.93 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.115 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 13.703 TOTAL RAINFALL (mm)= 49.520 RUNOFF COEFFICIENT = 0.277 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

SHYD (0005) 1 DT= 5.0 min	Ia	(mm)=	7.00	Curve Num # of Line	ıber (C ear Res.(N)= 74.0 N)= 3.00	
NOTE: RAINF	ALL WAS TF	RANSFORM	ED TO	5.0 MIN.	TIME STE	Ρ.	
		TR	ANSFORM	ED HYETOGR	арн		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs 0.083	mm/hr 5.79	hrs 0 933	mm/hr	' hrs	mm/hr	2.33	
0.167				1.667			6.01
0.250	6.82	1.000	124.56	1.750	8.98	2.50	6.01
0.333	6.82 8.45	1.083	26.38	1.833	8.98	2.58	5.59
0.417	8.45	1.167	26.38	1.917	7.93	2.67	5.59
0.500	8.45 11.56 11.56 21.49	1.333	16.63	2.000	7.14	2.75	5.23
0.667	11.56	1.417	12.68	2.167	7.14	2.92	4.93
0.750	21.49	1.500	12.68	2.250	6.51	3.00	4.93
Unit Hyd Qpeak	(cms)= 0	219					
RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE	(mm)= 49	9.520					
(i) PEAK FLOW DO	ES NOT INC	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT INC	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT INC	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT INC	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT INC	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT INC	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT INC	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT INC	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT INC	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT INC	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT INC	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT ING	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT ING	CLUDE BA	SEFLOW :	IF ANY.			
(i) PEAK FLOW DO	ES NOT ING	CLUDE BA	SEFLOW :	IF ANY.			
(Ì) PEAK FLOW DO	ES NOT ING	CLUDE BA	SEFLOW :	IF ANY.			

V V I SSSSS U U A L (v 6.2.2008) V V I SS U U AA L V V I SS U U AAAA V V I SS U U AAAAA L V V I SS U U A A L VV I SSS U U A A L VV I SSSSS UUUUU A A LLLLL	used in: INTENSITY = A / (t + B)^C Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.33 TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.00 6.80 0.83 146.25 1.67 10.54 2.50 6.56
000 TTTTT TTTT H H Y Y M M 000 TM 0 0 T T H H YY MM MM 0 0 0 0 T T H H YY MM M 0 0 000 T T H H Y M M 00 eveloped and Distributed by Smart City Water Inc pyright 2007 - 2021 Smart City Water Inc 11 rights reserved.	0.17 8.01 1.00 30.97 1.83 9.31 2.67 6.14 0.33 9.92 1.17 19.53 2.00 8.38 2.83 5.79 0.50 13.57 1.33 14.89 2.17 7.65 0.67 25.24 1.50 12.27 2.33 7.05
***** DETAILED OUTPUT *****	CALIB NASHYD (0001) Area (ha)= 4.32 Curve Number (CN)= 74.0 ID= ID= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00
Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\V02\voin.dat Output filename:	U.H. Tp(hrs)= 0.36 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
:\Users\kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\a293c 5c-5f29-47bd-a0cf-3c1334c578f2\scena	TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN
Summary filename: !Users\kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\a293c 5c-5f29-47bd-a0cf-3c1334c578f2\scena	hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 0.083 6.80 0.833 25.24 1.583 12.27 2.33 7.65
ATE: 08-23-2022 TIME: 11:41:14	0.167 6.80 0.917 146.25 1.667 12.27 2.42 7.05 0.250 8.01 1.000 146.25 1.750 10.54 2.50 7.05 0.333 8.01 1.083 30.97 1.833 10.54 2.58 6.56
er:	
MMENTS:	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79
	Unit Hyd Qpeak (cms)= 0.458 PEAK FLOW (cms)= 0.166 (i)
** SIMULATION : D. 25yr 3hr 10min Chicago **	TIME TO PEAK (hrs)= 1.417 RUNOFF VOLUME (mm)= 18.628 TOTAL RAINFALL (mm)= 58.144
***************************************	RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CHICAGO STORM IDF curve parameters: A= 731.314 Ptotal= 58.14 mm B= 0.000	
ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00	0.583 13.57 1.333 19.53 2.083 8.38 2.83 6.14 0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 LD=1DT=5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (i) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID = 1 DT = 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144
$\begin{split} & \text{NASHYD} \left(\begin{array}{c} 0002 \\ 0002 \\ 1 \end{array} \right) \left[\begin{array}{c} \text{Area} \\ \text{Ia} \\ \text{(mm)} = 13.33 \\ \text{Curve Number} \\ \text{(CN)} = 74.0 \\ Momental of the set of the s$	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
$ \begin{array}{c} \text{NASHYD} & (\ \mbox{0.6} 0 \ \mbox{0.6} 0 \ \mbox{0.6} 1$	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ED= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 TRAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN ITME RAIN 'TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.083 6.80 0.833 25.24 1.583 12.27 2.33 7.65 0.167 6.80 0.917 146.25 1.667 12.27 2.42 7.05 0.250 8.01 1.000 146.25 1.676 10.54 2.58 6.56 0.417 9.92 1.167 30.97 1.913 2.000 9.31 2.75 6.14 0.683 3.57 1.333 10.54 2.567 6.56 0.590 9.92 1.250 19.53 2.000 9.31 2.75 6.14 0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.821 PEAK FLOW (cms)= 0.361 (1)	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID = 1DT = 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1DT= 5.0 min I a (mm)= 7.00 # of Linear Res.(N)= 3.00 	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 10T= 5.0 min I (mm)= 7.00 # of Linear Res.(N)= 3.00 	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1D= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 TIME RAIN TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN ITME RAIN 'TIME RAIN 'TIME RAIN I'T ME RAIN hrs mm/hr hrs mm/hr 'hrs mn/hr hrs mm/hr 0.083 6.00 0.833 25.24 1.583 12.27 2.33 7.65 0.167 6.80 0.0917 146.25 1.667 12.27 2.24 2.7.05 0.250 8.01 1.000 146.25 1.750 10.54 2.50 7.05 0.333 8.01 1.083 30.97 18.33 10.54 2.58 6.56 0.417 9.92 1.167 30.97 1.913 2.07 6.56 0.560 9.92 1.250 19.53 2.000 9.31 2.75 6.14 0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.821 PEAK FLOW (cms)= 0.821 PEAK FLOW (cms)= 0.821 PEAK FLOW (cms)= 0.821 PEAK FLOW (cms)= 0.821 CALIB NASHYO (0003) Area (ha)= 3.05 Curve Number (CN)= 74.0 ID= 1DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1D= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 TIME RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN TIME RAIN 'TIME RAIN 'TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr 'hrs mn/hr hrs mm/hr 0.083 6.00 0.833 25.24 1.583 12.27 2.33 7.65 0.167 6.80 0.917 146.25 1.667 12.27 2.42 7.05 0.250 8.01 1.000 146.25 1.750 10.54 2.58 6.56 0.417 9.92 1.167 30.97 1.913 2.67 6.56 0.540 9.92 1.250 19.53 2.000 9.31 2.75 6.14 0.667 13.57 1.417 14.89 2.167 8.38 2.02 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.821 PEAK FLOW (cms)= 0.821 PEAK FLOW (cms)= 0.361 (i) TIME TO PEAK (hrs)= 1.750 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 DD 1 1 I (mm)= 7.00 # of Linear Res.(N)= 3.00 	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 DD = 1 DT = 5.0 min I a (mm) = 7.00 # of Linear Res.(N)= 3.00 TRAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN ITME RAIN ' TIME RAIN I' TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.083 6.00 0.833 25.24 1.583 12.27 2.33 7.65 0.167 6.80 0.917 146.25 1.667 12.27 2.24 7.05 0.250 8.01 1.000 146.25 1.750 19.54 2.50 7.05 0.333 8.01 1.083 30.97 1.833 10.54 2.58 6.56 0.417 9.92 1.167 30.97 1.913 9.31 2.67 6.56 0.500 9.92 1.250 19.53 2.000 9.31 2.75 6.14 0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.821 PEAK FLOW (cms)= 0.861 (i) TIME TO PEAK (hrs)= 1.750 RUNOFF VOLUME (mm)= 18.631 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALTB NASHYD (0003) Area (ha)= 3.05 Curve Number (CN)= 74.0 DD = 1 DT = 5.0 min I a (mm)= 7.00 # of Linear Res.(N)= 3.00 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN I TIME RAIN ' TIME RAIN I TIME RAIN	0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.162 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 18.607 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.883 6.80 0.833 25.24 1.583 12.27 2.33 7.65 0.167 6.80 0.917 146.25 1.667 12.27 2.42 7.65 0.250 8.01 1.000 146.25 1.563 12.27 2.42 7.05 0.250 8.01 1.000 146.25 1.563 12.27 2.42 7.05 0.333 8.01 1.083 30.97 1.833 10.54 2.58 6.56 0.417 9.92 1.167 30.97 1.917 9.31 2.67 6.56 0.650 9.92 1.250 19.53 2.080 8.38 2.83 6.14 0.667 13.57 1.333 19.53 2.083 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.000 5.79 Jnit Hyd Qpeak (cms)= 0.219 PEAK FLOW (cms)= 0.219	= 1 DT= 5.0 min	Ia	(mm)=	7.00	Curve Num # of Line	ber (C ar Res.(N)= 74.0 N)= 3.00	
TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN TIME RAIN I I.1667 1.351 1.217 1.433 1.207 1.433 1.054 1.258 6.56 6.56 0.560 9.92 1.167 3.33 1.917 9.31 2.67 6.14 0.667 1.357 1.431 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417					5.0 MIN.	TIME STE	Ρ.	
TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN TIME RAIN I I.1667 1.351 1.217 1.433 1.207 1.433 1.054 1.258 6.56 6.56 0.560 9.92 1.167 3.33 1.917 9.31 2.67 6.14 0.667 1.357 1.431 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417 1.417			то					
0.083 6.80 0.833 25.24 1.583 12.27 2.33 7.65 0.167 6.80 0.917 146.25 1.667 12.27 2.42 7.05 0.250 8.01 1.000 146.25 1.750 10.54 2.50 7.05 0.333 8.01 1.083 30.97 1.833 10.54 2.58 6.56 0.417 9.92 1.167 30.97 1.917 9.31 2.67 6.56 0.500 9.92 1.1250 19.53 2.000 9.31 2.75 6.14 0.583 13.57 1.333 19.53 2.083 8.38 2.83 6.14 0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.219 PEAK FLOW (cms)= 0.082 (i) TIME TO PEAK (cms)= 8.082 (i) TIME TO PEAK (cms)= 8.384 RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320			TIME	RAIN	' TIME	RAIN	TIME	
0.167 6.88 0.917 146.25 1.667 12.27 2.42 7.05 0.250 8.01 1.000 146.25 1.750 10.54 2.56 7.05 0.333 8.01 1.083 30.97 1.833 10.54 2.58 6.56 0.417 9.92 1.167 30.97 1.917 9.31 2.67 6.56 0.580 9.92 1.250 19.53 2.000 9.31 2.75 6.14 0.583 13.57 1.333 19.53 2.000 9.31 2.75 6.14 0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Unit Hyd Qpeak (cms)= 0.219 PEAK FLOW (cms)= 0.082 (i) TIME TO PEAK (hrs)= 1.417 RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.								
0.250 8.01 1.000 146.25 1.750 10.54 2.50 7.05 0.333 8.01 1.068 30.97 1.833 10.54 2.58 6.56 0.417 9.92 1.167 30.97 1.917 9.31 2.67 6.56 0.500 9.92 1.250 19.53 2.000 9.31 2.75 6.14 0.583 13.57 1.333 19.53 2.083 8.38 2.83 6.14 0.667 13.57 1.417 14.89 2.167 8.38 2.92 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Jnit Hyd Qpeak (cms)= 0.219 PEAK FLOW (cms)= 1.417 RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	0.083	6.80	0.833	25.24	1.583	12.2/	2.33	7.65
0.333 8.01 1.083 30.97 1.833 10.54 2.58 6.56 0.417 9.92 1.167 30.97 1.917 9.31 2.67 6.56 0.580 9.92 1.1250 19.53 2.000 9.31 2.75 6.14 0.583 13.57 1.333 19.53 2.083 8.38 2.83 6.14 0.667 13.57 1.417 14.89 2.250 7.65 3.00 5.79 0.750 25.24 1.500 14.89 2.250 7.65 3.00 5.79 Jnit Hyd Qpeak (cms)= 0.219 PEAK FLOW (cms)= 0.082 (i) ITME TO PEAK (hrs)= 1.417 RWOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	0.250	8.01	1.000	146.25	1.750	10.54	2.50	7.05
0.500 9.92 1.250 19.53 2.000 9.31 2.75 6.14 0.583 13.57 1.333 19.53 2.083 8.38 2.83 6.14 0.667 13.57 1.417 14.89 2.167 8.38 2.83 6.14 0.667 2.5.24 1.500 14.89 2.250 7.65 3.00 5.79 Jnit Hyd Qpeak (cms)= 0.219 PEAK FLOW (cms)= 0.082 (i) TIME TO PEAK (hrs) = 1.417 RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm) = 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	0.333	8.01	1.083	30.97	1.833	10.54	2.58	6.56
0.500 9.92 1.250 19.53 2.000 9.31 2.75 6.14 0.583 13.57 1.333 19.53 2.083 8.38 2.83 6.14 0.667 13.57 1.417 14.89 2.167 8.38 2.83 6.14 0.667 2.5.24 1.500 14.89 2.250 7.65 3.00 5.79 Jnit Hyd Qpeak (cms)= 0.219 PEAK FLOW (cms)= 0.082 (i) TIME TO PEAK (hrs) = 1.417 RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm) = 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	0.417	9.92	1.167	30.97	1.917	9.31	2.67	6.56
Jnit Hyd Qpeak (cms)= 0.219 PEAK FLOW (cms)= 0.082 (i) TIME TO PEAK (hrs)= 1.417 RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	0.500	9,92	1.250	19.53	2,000	9.31	2.75	6.14
Jnit Hyd Qpeak (cms)= 0.219 PEAK FLOW (cms)= 0.082 (i) TIME TO PEAK (hrs)= 1.417 RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	0.583	13.57	1.333	19.53	2.083	8.38	2.83	6.14
Jnit Hyd Qpeak (cms)= 0.219 PEAK FLOW (cms)= 0.082 (i) TIME TO PEAK (hrs)= 1.417 RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	0.667	13.57	1.41/	14.89	2.16/	8.38	2.92	5.79
PEAK FLOW (cms)= 0.082 (i) TIME TO PEAK (hrs)= 1.417 RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	0.750	23.24	1.500	14.05	1 21230	7.05	5.00	5.75
RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	Unit Hyd Qpeak (cms)= 0	9.219					
RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	PEAK FLOW (cms)= @	9.082 (i	.)				
RUNOFF VOLUME (mm)= 18.629 TOTAL RAINFALL (mm)= 58.144 RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	TIME TO PEAK (hrs)= 1	1.417 `	<i>.</i>				
RUNOFF COEFFICIENT = 0.320 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	RUNOFF VOLUME	(mm)= 18	3.629					
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.								
	RUNOFF COEFFICIEN	T = 6	0.320					
	(i) PEAK FLOW DOE	S NOT INC	LUDE BA	SEFLOW :	F ANY.			

V V I SSSSS U U A L (V 6.2.2008) V V I SS U U AA L V V I SS U U AAAA V V I SS U U AAAAA V V I SS U U AAAAA V V I SS U U A A L VV I SSSS UUUUU A A LLLLL	used in: INTENSITY = A / (t + B)^C Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.33 TIME RAIN TIME RAIN 'TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.00 7.55 0.83 16.25 1.67 11.70 2.50 7.28
000 TTTTT TTTTT H H Y Y M M 000 TM 0 0 T T H H Y Y MM MM 0 0 0 0 T T H H Y M M 0 0 000 T T H H Y M M 0 0 000 T T H H Y M M 000 veloped and Distributed by Smart City Water Inc pyright 2007 - 2021 Smart City Water Inc l rights reserved.	0.17 8.89 1.00 34.38 1.83 10.34 2.67 6.82 0.33 11.01 1.17 21.68 2.00 9.30 2.83 6.42 0.50 15.66 1.33 16.53 2.17 8.49 9 0.67 28.01 1.50 13.62 2.33 7.83
***** DETAILED OUTPUT *****	CALTB NASHYD (0001) Area (ha)= 4.32 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00
Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\V02\voin.dat	U.H. Tp(hrs)= 0.36 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
Output filename: \\Users\kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\c7d91 4-5d43-485b-9fd7-58c9707dae8e\scena	TRANSFORMED HYETOGRAPH
Summary filename: \Users\kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\c7d91 4-5d43-485b-9fd7-58c9707dae8e\scena	TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr 0.083 7.55 0.833 28.01 1.583 13.62 2.33 8.49
TE: 08-23-2022 TIME: 11:41:14	$ \begin{array}{ccccccccccccccccccccccccccccccc$
ER:	
MMENTS:	0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42
	Unit Hyd Qpeak (cms)= 0.458 PEAK FLOW (cms)= 0.204 (i)
** SIMULATION : E. 50yr 3hr 10min Chicago **	TIME TO PEAK (hrs)= 1.417 RUNOFF VOLUME (mm)= 22.553 TOTAL RAINFALL (mm)= 64.542
	RUNOFF COEFFICIENT = 0.349 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CHICAGO STORM IDF curve parameters: A= 811.794 Ptotal= 64.54 mm B= 0.000	
C= 0.699	
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 D= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00	 0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.530
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 D= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.200 (1) TIME TO PEAK (hrs)= 1.167 RUNOF VOLUME (mm)= 22.528
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 D= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 0.083 7.55 0.83 28.01 [1.583 13.62] 2.33 8.49	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.200 (1) TIME TO PEAK (hrs)= 1.167 RUMOFF VOLUME (mm)= 22.528 TOTAL RAINFALL (mm)= 64.542 RUNOFF COEFFICIENT = 0.349
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 D 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN hrs mm/hr 0.083 7.55 0.83 28.01 1.583 13.62 2.33 8.49 0.167 7.55 0.917 162.35 1.667 13.62 2.42 7.83 0.250 8.89 1.000 162.35 1.750 11.70 2.50 7.83 0.333 8.89 1.008 34.38 1.833 1.70 2.58 7.28	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.200 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLME (mm)= 22.528 TOTAL RAINFALL (mm)= 64.542
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 D 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.833 28.01 1.583 13.62 2.33 8.49 0.167 7.55 0.833 28.01 1.583 13.62 2.33 8.49 0.6167 7.55 0.833 28.01 1.583 13.62 2.42 7.83 0.626 8.89 1.000 162.35 1.767 0.1.76 2.50 7.83 0.333 8.89 1.083 34.38 1.833 1.1.76 2.58 7.28 0.417 11.01 1.167 34.38 1.917 10.34 2.67 7.28 0.690 11.01 1.250 21.68 2.080 9.30 2.83 6.82	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.66 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.200 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 22.528 TOTAL RAINFALL (mm)= 64.542 RUNOFF COEFFICIENT = 0.349 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB Area (ha)= 13.33 Curve Number (CN)= 74.0 NASHYD (0002) Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 DI=1 DT=5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN TIME RAIN 'TIME RAIN 'TIME RAIN TIME RAIN 'N TIME 'N TIME RAIN	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.200 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 22.528 TOTAL RAINFALL (mm)= 64.542 RUNOFF COLUME (mm)= 0.349 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 D= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.883 7.55 0.833 28.01 1.583 13.62 2.33 8.49 0.167 7.55 0.917 162.35 1.667 13.62 2.42 7.83 0.250 8.89 1.000 162.35 1.760 1.76 2.50 7.83 0.333 8.89 1.083 34.38 1.833 11.70 2.58 7.28 0.417 11.01 1.167 34.38 1.917 10.34 2.67 7.28 0.650 11.01 1.125 21.68 2.000 10.34 2.75 6.82 0.657 15.66 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.66 1.417 16.53 2.167 9.30 2.22 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.821 PEAK FLOW (cms)= 0.442 (1)	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.200(1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 22.528 TOTAL RAINFALL (mm)= 64.542 RUNOFF COEFFICIENT = 0.349 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB MASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 D I DT= 5.0 min I (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr 0.0883 7.55 0.917 162.35 1.667 13.62 2.42 7.83 0.250 8.89 1.000 162.35 1.750 11.70 2.50 7.83 0.333 8.89 1.000 162.35 1.750 11.70 2.50 7.83 0.417 11.01 1.167 34.38 1.931 7.03 2.58 7.28 0.417 11.01 1.167 34.38 1.917 10.34 2.67 7.28 0.667 15.06 1.313 21.68 2.003 9.30 2.83 6.82 0.583 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 2.801 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.821 PEAK FLOW (cms)= 0.442 (1) TIME TO PEAK (hrs)= 1.750 RUMOFF VOLUME (mm)= 22.557 TOTAL RAINFALL (mm)= 64.542	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.200 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 22.528 TOTAL RAINFALL (mm)= 6.422 RUNOFF COEFFICIENT = 0.349 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 D= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HVETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr ' hrs mm/hr 0.0883 7.55 0.833 28.01 1.583 13.62 2.43 8.49 0.167 7.55 0.917 162.35 1.667 13.62 2.42 7.83 0.250 8.89 1.000 162.35 1.760 1.70 2.50 7.83 0.417 11.01 1.167 34.38 1.931 1.034 2.67 7.28 0.417 11.01 1.167 34.38 1.917 10.34 2.67 7.28 0.667 15.06 1.333 21.68 2.009 10.34 2.75 6.82 0.667 15.06 1.147 16.53 2.167 9.30 2.292 6.42 0.579 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.821 PEAK FLOM (cms)= 0.442 (1) TIME TO PEAK (hrs)= 1.750 RUNOFF VOLUME (mr)= 2.557	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.66 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.200 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 22.528 TOTAL RAINFALL (mm)= 64.542 RUNOFF COEFFICIENT = 0.349 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB MASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 D= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.200 (1) TIME TO PEAK (hrs)= 1.167 RNOFF VOLUME (mm)= 22.528 TOTAL RAINFALL (mm)= 64.542 RUNOFF COEFFICTENT = 0.349 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 D= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.759 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.200 (1) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 22.528 TOTAL RAINFALL (mm)= 64.542 RUNOFF COEFFICIENT = 0.349 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB NASHYD (0002) D= 1 DT= 5.0 min Ia (mm) = 7.00 # of Linear Res.(N) = 74.0 D= 1 DT= 5.0 min Ia (mm) = 7.00 # of Linear Res.(N) = 3.00 U.H. Tp(hrs) = 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 0.633 7.55 0.833 28.01 1.583 13.62 2.42 7.83 0.167 13.62 2.42 7.83 0.250 8.89 1.000 162.35 1.667 13.62 2.42 7.83 0.333 8.89 1.083 34.38 1.931 11.70 2.58 7.28 0.417 11.01 1.167 34.38 1.917 10.34 2.67 7.28 0.500 11.01 1.250 21.68 2.083 9.30 2.83 6.82 0.658 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 1.653 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms) = 0.422 (1) TIME TO PEAK (hrs) = 1.750 RUMOFF VOLUME (mm) = 64.542 RUMOFF VOLUME (mm) = 64.542 RUMOFF COEFFICIENT = 0.349 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	$\frac{0.583}{0.667} \frac{15.06}{1.417} \frac{1.333}{1.68} \frac{2.083}{2.167} \frac{9.30}{9.30} \frac{2.83}{2.92} \frac{6.82}{6.42} \\ 0.759 28.01 \frac{1.509}{1.509} \frac{1.653}{2.259} \frac{2.92}{8.49} \frac{6.42}{3.00} \frac{6.42}{6.42} \\ \text{Unit Hyd Qpeak (cms)=} 0.530 \\ \text{PEAK FLOW (cms)=} 0.200 (1) \\ \text{TIME TO PEAK (hrs)=} 1.167 \\ \text{RUNOFF VOLUME (mm)=} 22.528 \\ \text{TOTAL RAINFALL (mm)=} 64.542 \\ \text{RUNOFF COEFFICIENT =} 0.349 \\ (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 DI 1DT=5.0 min DI 1DT=5.0 min Ta (mm)= 7.00 # of Linear Res.(N)= 3.00 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN hrs mm/hr hrs hrs hrs hrs hrs hrs hrs hrs hrs hrs	0.583 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 16.53 2.167 9.30 2.92 6.42 0.750 28.01 1.500 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOM (cms)= 0.200 (1) TIME TO PEAK (hrs)= 1.157 RUNOFF VOLUME (mm)= 22.528 TOTAL RAITRALL (mm)= 64.542 RUNOFF COFFICIENT = 0.349 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. TOTAL RAITHEAL (MAS TRANSFORMED TO 5.0 MIN. TIME STEP. CALIB ACM M TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN </td
CALIB NASHYD (0002) D = 1 DT = 5.0 min I a (ma) = 7.00 # of Linear Res.(N) = 74.0 D = 1 DT = 5.0 min U.H. Tp(hrs) = 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN hrs mm/hr hrs mm/hr / hrs mm/hr hrs mm/hr hrs mm/hr 0.083 7.55 0.833 28.01 1.583 13.62 2.33 8.49 0.167 7.55 0.917 162.35 1.667 13.62 2.33 8.49 0.167 7.55 0.917 162.35 1.769 11.70 2.50 7.83 0.250 8.89 1.000 162.35 1.750 11.70 2.50 7.83 0.333 8.89 1.083 34.38 1.833 11.70 2.58 7.28 0.417 11.01 1.157 21.68 2.000 10.34 2.75 6.82 0.560 15.06 1.417 11.65 3 2.167 3.30 2.92 6.42 0.563 15.06 1.333 21.68 2.083 9.30 2.83 6.82 0.667 15.06 1.417 11.65 3 2.157 9.30 2.92 6.42 0.759 28.01 1.590 16.53 2.250 8.49 3.00 6.42 Unit Hyd Qpeak (cms) = 0.821 PEAK FLOM (cms) = 0.442 (1) TIME TO PEAK (hrs) = 1.750 (1) PEAK FLOM DOES NOT INCLUDE BASEFLOW IF ANY. 	$\begin{array}{c} 0.583 & 15.06 & 1.333 & 21.68 & 2.083 & 9.30 & 2.83 & 6.82 \\ 0.667 & 15.06 & 1.417 & 16.53 & 2.167 & 9.30 & 2.92 & 6.42 \\ 0.750 & 28.01 & 1.590 & 16.53 & 2.250 & 8.49 & 3.00 & 6.42 \\ \end{array}$ Unit Hyd Qpeak (cms)= 0.530 $\begin{array}{c} \text{PEAK FLOW} & (cms)= & 0.200 (1) \\ \text{TIME TO PEAK (hrs)=} & 1.167 \\ \text{RUMOFF VOLME (mm)=} & 22.528 \\ \text{TOTAL RAINFALL (mm)=} & 64.542 \\ \text{RUMOFF COEFFICIENT} & = & 0.349 \\ \hline \end{array}$ (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. $\begin{array}{c} \hline \hline \\ \text{CALIB} \\ \hline \\ \text{MASHYD} & (& 0004) \\ \text{ID=1 DT= 5.0 min} \\ \hline \\ \text{ID=1 DT= 5.0 min} \\ \hline \\ \text{ID=1 DT= 5.0 min} \\ \hline \\ \text{NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \begin{array}{c} \hline \\ NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. \\ \hline \\ \hline \\ \hline \\ \text{OCAL BASS STEP SUB$

SHYD (0005) 1 DT= 5.0 min		(mm)=	7.00				
NOTE: RAINFA	LL WAS TH	RANSFORM	ED TO	5.0 MIN.	TIME STE	Ρ.	
		TR	ANSFORME	D HYETOGR	АРН		
TIME hrs				' TIME ' hrs			
0.083	7,55	0.833	28.01	1.583	13.62	2.33	8.49
0.167	7.55	0.917	162.35	1.583 1.667	13.62	2.42	7.83
0.250	8.89	1.000	162.35	1.750	11.70	2.50	7.83
0.333	8.89	1.083	34.38	1.833	11.70	2.58	7.28
0.417	11.01	1.16/	34.38 21.68	1.917 2.000	10.34	2.6/	6 82
0.583	15.06	1.333	21.68	2.083	9.30	2.83	6.82
0.667	15.06	1.417	16.53	2.167 2.250	9.30	2.92	6.42
0.750	28.01	1.500	16.53	2.250	8.49	3.00	6.42
Unit Hyd Qpeak (cms)= 6	9.219					
PEAK FLOW (cms)= (9.101 (i	.)				
TIME TO PEAK (hrs)= :	1.417					
RUNOFF VOLUME	(mm)= 22	2.554					
TOTAL RAINFALL							
RUNOFF COEFFICIEN	. = .	9.349					
(i) PEAK FLOW DOE	S NOT INC	LUDE BA	SEFLOW 1	F ANY.			

	used in: INTENSITY = A / (t + B)^C Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.33 TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN hrs mm/hr hrs mn/hr ' hrs mm/hr hrs mm/hr 0.00 8.30 0.83 178.44 1.67 12.86 2.50 8.00 0.17 9.77 1.00 37.79 1.83 11.36 2.57 7.50 0.33 12.10 1.17 23.83 2.00 10.23 2.83 7.06 0.50 16.55 1.33 18.17 2.17 9.33 0.67 30.79 1.50 14.97 2.33 8.61
<pre>***** DETAILED OUTPUT***** Input filename: C:\Users\kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\aa5ac d95-4301-4ff3-8e1d-3d4cf191cfd4\scena Summary filename: C:\Users\kswain\AppData\Local\Civica\VH5\5e7e8f9f-3516-4350-9cc9-216f91ea9b42\aa5ac d95-4301-4ff3-8e1d-3d4cf191cfd4\scena DATE: 08-23-2022 TIME: 11:41:14 USER:</pre>	CALIB NASHYD (0001) Area (ha)= 4.32 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.36 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 0.083 30.79 1.583 14.97 2.42 8.61 0.250 9.77 1.000 178.44 1.667 14.97 2.42 8.61 0.33 9.77 1.083 37.79 1.383 12.86 2.58 8.60 0.417 12.10 1.167 37.79 1.917 11.36 2.67 8.00 0.650 1.210 1.250 23.83 2.000 1.36 2.75 7.50 0.500 12.10 1.250 23.83 2.080 11.36 2.75 7.50 0.500 1.333 23.83 2.083 10.23 2.83 7.50
COMMENTS:	0.667 16.55 1.417 18.17 2.167 10.23 2.92 7.06 0.750 30.79 1.500 18.17 2.250 9.33 3.00 7.06 Unit Hyd Qpeak (cms)= 0.458 PEAK FLOW (cms)= 0.244 (i) TIME TO PEAK (hrs)= 1.333 RUNOFF VOLUME (mm)= 26.684 TOTAL RAINFALL (mm)= 70.941 RUNOFF COEFFICIENT = 0.376 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN I'IME RAIN NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN I'IME RAIN </th <th>0.583 16.55 1.333 23.83 2.083 10.23 2.83 7.50 0.667 16.55 1.417 18.17 2.167 10.23 2.92 7.06 0.750 30.79 1.500 18.17 2.250 9.33 3.00 7.06 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.241 (i) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 26.654 TOTAL RAIMFALL (mm)= 70.941 RUNOFF COEFFICIENT = 0.376 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</th>	0.583 16.55 1.333 23.83 2.083 10.23 2.83 7.50 0.667 16.55 1.417 18.17 2.167 10.23 2.92 7.06 0.750 30.79 1.500 18.17 2.250 9.33 3.00 7.06 Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.241 (i) TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 26.654 TOTAL RAIMFALL (mm)= 70.941 RUNOFF COEFFICIENT = 0.376 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
0.500 12.10 1.250 23.83 2.000 11.36 2.75 7.50 0.583 16.55 1.333 2.38 2.083 10.23 2.83 7.50 0.667 16.55 1.317 18.17 2.167 10.23 2.92 7.06 0.750 30.79 1.500 18.17 2.250 9.33 3.00 7.06 Unit Hyd Qpeak (cms)= 0.821 PEAK FLOW (cms)= 0.528 (i) TIME TO PEAK (hrs)= 1.750 RUNOFF VOLUME (mm)= 26.689 TOTAL RAINFALL (mm)= 70.941 RUNOFF COEFFICIENT = 0.376 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	[CALTB NASHYD (0004) Area (ha)= 3.00 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.17 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN NOTE: RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN Cols3 8.30 0.167 8.33 0.167 8.33 0.167 8.33 0.167 8.33 0.500 12.70 1.200 178.44 1.667 12.86 2.50 8.61 0.500 12.10 1.167 37.79 1.833 12.66 0.607 1.600 0.617 1.333 0.771 1.083 0.500 12.10 1.167 37.79 1.917 11.36 2.67
NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr 0.083 8.30 0.833 30.79 1.583 14.97 2.33 9.33 0.167 8.30 0.917 17.844 1.667 14.97 2.42 8.61 0.250 9.77 1.000 178.44 1.750 12.86 2.58 8.00 0.333 9.77 1.083 37.79 1.833 12.86 2.67 8.00 0.417 12.10 1.167 37.79 1.917 11.36 2.67 8.00 0.417 12.10 1.250 23.83 2.000 11.36 2.75 7.50	Unit Hyd Qpeak (cms)= 0.674 PEAK FLOW (cms)= 0.278 (i) TIME TO PEAK (hrs)= 1.083 RUNOFF VOLUME (mm)= 26.594 TOTAL RAINFALL (mm)= 70.941 RUNOFF COEFFICIENT = 0.375 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

NASHYD (0 ID= 1 DT= 5.0			(mm)=	7.00				
NOTE:	RAINFAI	L WAS T	RANSFORM	ED TO	5.0 MIN.	TIME STE	Ρ.	
			TR	ANSFORME	D HYETOGR	АРН	-	
	TIME	RAIN			' TIME			RAIN
	hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
	0.083	8.30	0.833	30.79	1.583	14.97	2.33	9.33
	0.167	8.30	0.917	178.44	1.667	14.97	2.42	8.61
	0.250	9.77	1.000	178.44	1.750	12.86	2.50	8.61
	0.333	9.77	1.083	37.79	1.833	12.86	2.58	8.00
	0.417	12.10	1.167	37.79	1.917	11.36	2.67	8.00
	0.500	12.10	1.250	23.83	2.000	11.36	2.75	7.50
	0.583	16.55	1.333	23.83	2.083	10.23	2.83	7.50
	0.667	16.55	1.417	18.17	2.167	10.23	2.92	7.06
	0.750	30.79	1.500	18.17	2.250	9.33	3.00	7.06
Unit Hyd (Qpeak (o	:ms)= (0.219					
PEAK FLOW	(0	:ms)= (ð.121 (i)				
TIME TO P								
RUNOFF VO	UME	(mm)= 2	5.686					
TOTAL RAI	IFALL ((mm)= 70	0.941					
RUNOFF CO	FFICIEN	[= (0.376					
(i) PEAK I	LOW DOES	5 NOT IN	CLUDE BA	SEFLOW I	F ANY.			
INISH								

<pre></pre>	Bab5695-7981-44cd-9ed6-5a18ca9f22ac\16ec51c6 Comments: G. 2yr 24hr 15min SC5 Type II TIME RAIN TIME RAIN 'IME RAIN IME RAIN hrs mm/hr hrs h
DATE: 08-23-2022 TIME: 11:47:06	
COMMENTS:	ID=1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.36 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
** SIMULATION : G. 2yr 24hr 15min SCS Type II ** *** SIMULATION : G. 2yr 24hr 15min SCS Type II ** *** READ STORM Filename: C:\Users\kswain\AppD ata\Local\Temp\	TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN ' TIME ' TIME RAIN ' TIME
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 4.667 0.96 10.750 2.77 16.833 1.08 22.92 0.72 4.750 0.96 10.833 3.73 16.917 1.08 23.00 0.72 4.833 0.96 10.917 3.73 17.093 1.08 23.17 0.72 5.080 0.96 11.080 3.73 17.083 1.08 23.17 0.72 5.083 0.96 10.157 3.73 17.250 1.08 23.25 0.72 5.167 0.96 11.250 3.73 17.333 1.08 23.42 0.72 5.157 0.96 11.250 3.73 17.417 1.08 23.50 0.72 5.417 0.96 11.500 5.77 17.583 1.08 23.58 0.72 5.417 0.96 11.583 5.77 17.667 1.08 23.58 0.72 5.417 0.96 11.583 5.77 17.667 1.08 23.75 0.72 5.568 0.96 11.158 5.77 17.583 1.08 23.67 0.72 5.417 0.96 11.580 5.77 17.583 1.08 23.67 0.72 5.583 0.96 11.667 5.77 17.583 1.08 23.67 0.72 5.667 0.96 11.583 5.77 17.683 1.08 23.67 0.72 5.583 0.96 11.670 1.75 0.5.77 17.833 1.08 23.92 0.72 5.667 0.96 11.593 5.77 17.437 1.088 24.00 0.72 5.833 0.96 11.917 17.80 18.000 1.08 24.17 0.72 5.833 0.96 11.2.000 17.80 18.080 1.08 24.17 0.72 5.833 0.96 12.067 73.60 18.250 1.08 Unit Hyd Qpeak (cms)= 0.458 PEAK FLOM (cms)= 0.443 (1) TIME TO PEAK (hrs)= 12.500 RUNOFF VOLUME (mm)= 19.823 TOTAL RAINFALL (mm)= 60.130 RUNOFF COEFFICIENT = 0.330 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CALIB Image: Construct of the second se

0.750 0.66 6.833 1.08 12.917 4.45 19.00 1.08 0.833 0.66 6.917 1.08 13.000 4.45 19.08 1.08 0.917 0.66 7.000 1.08 13.083 4.45 19.17 1.08 1.000 0.66 7.080 1.08 13.083 4.45 19.17 1.08 1.002 0.66 7.080 1.08 13.067 4.45 19.33 1.08 1.083 0.66 7.167 1.08 13.250 4.45 19.33 1.08 1.250 0.66 7.331 1.32 13.417 3.25 19.69 1.08 1.333 0.66 7.417 1.32 13.500 3.25 19.58 1.08 1.417 0.66 7.583 1.32 13.67 3.25 19.67 1.08 1.583 0.66 7.677 1.32 13.53 3.55 19.92 1.08 1.590 0.66 7.797 1.32 14.080 2.53 20.08 1.08	4.917 0.96 11.000 3.73 17.083 1.08 23.17 0.72 5.000 0.96 11.083 3.73 17.167 1.08 23.25 0.72 5.083 0.96 11.167 3.73 17.250 1.08 23.33 0.72 5.167 0.96 11.259 3.73 17.33 1.08 23.42 0.72 5.250 0.96 11.333 5.77 17.417 1.08 23.50 0.72 5.333 0.96 11.417 5.77 17.583 1.08 23.67 0.72 5.583 0.96 11.583 5.77 17.67 1.08 23.67 0.72 5.583 0.96 11.667 5.77 17.583 1.08 23.67 0.72 5.583 0.96 11.675 5.77 17.67 1.08 23.83 0.72 5.583 0.96 11.675 5.77 17.750 1.08 23.83 0.72 5.583 0.96 11.675 5.77 17.765 1.08 23.83 0.72 5.583 0.96 11.675 5.77 17.750 1.08 23.83 0.72 5.667 0.96 11.670 5.77 17.833 1.08 24.00 0.72 5.667 0.96 11.670 5.77 17.833 1.08 24.08 0.72 5.610 0.96 11.610 5.77 17.80 18.000 1.08 24.08 0.72 5.917 0.96 12.000 17.80 18.000 1.08 24.08 0.72 5.917 0.96 12.000 17.80 18.003 1.08 24.17 0.72 6.000 0.96 12.083 73.59 18.167 1.08 24.25 0.72 6.083 0.96 12.167 73.60 18.250 1.08 Unit Hyd Qpeak (cms)= 0.821 PEAK FLOW (cms)= 0.296 (1) TIME TO PEAK (hrs)= 12.833 RUMOFF VOLUME (mm)= 19.826 TOTAL RAINFALL (mm)= 60.130 RUMOFF COEFFICIENT = 0.330 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
2.917 0.78 9.800 1.68 15.63 1.68 21.25 0.72 3.080 0.78 9.267 1.68 15.250 1.80 21.25 0.72 3.083 0.78 9.267 1.68 15.250 1.80 21.25 0.72 3.167 0.78 9.250 1.68 15.250 1.80 21.42 0.72 3.333 0.78 9.417 1.92 15.500 1.80 21.56 0.72 3.417 0.78 9.593 1.92 15.657 1.80 21.57 0.72 3.500 0.78 9.593 1.92 15.563 1.80 21.57 0.72 3.583 0.78 9.579 1.92 15.567 1.80 21.92 0.72 3.667 0.78 9.579 1.92 15.833 1.80 21.92 0.72 3.667 0.78 9.833 2.16 16.000 1.80 22.17 0.72 3.750 0.78 9.833 2.16 16.67 1.80 22.17 0.72	CALIB Area (ha)= 3.05 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.22 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs m/hr hrs mm/hr hrs m/hr hrs m/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.167 0.96 11.250 3.73 17.333 1.08 23.42 0.72 5.250 0.96 11.333 5.77 17.417 1.08 23.50 0.72 5.333 0.96 11.417 5.77 17.500 1.08 23.58 0.72 5.417 0.96 11.500 5.77 17.580 1.08 23.58 0.72 5.500 0.96 11.500 5.77 17.567 1.08 23.75 0.72 5.583 0.96 11.670 5.77 17.750 1.08 23.75 0.72 5.667 0.96 11.750 5.77 17.760 1.08 23.92 0.72 5.750 0.96 11.79 5.77 17.83 1.08 24.00 0.72 5.917 0.96 12.070 17.80 18.083 1.08 24.17 0.72 6.080 0.96 12.167 73.60 18.250 1.08 24.25 0.72 6.080 0.96 12.167 73.60 18.250 1.08 24.25 0.72
3.250 0.7.8 9.333 1.92 15.417 1.80 0.7.2 3.333 0.78 9.417 1.92 15.500 1.80 21.58 0.72 3.417 0.78 9.500 1.92 15.583 1.80 21.67 0.72 3.500 0.78 9.583 1.92 15.567 1.80 21.67 0.72 3.580 0.78 9.667 1.92 15.757 1.80 21.67 0.72 3.667 0.78 9.750 1.92 15.833 1.80 21.02 0.72 3.633 0.78 9.813 2.16 15.075 1.80 21.83 0.72 3.677 0.78 9.833 2.16 15.077 1.80 21.02 0.72 3.633 0.78 9.917 2.16 16.167 1.80 22.04 0.72 3.917 0.78 10.603 2.16 16.167 1.80 22.17 0.72 4.600 0.78 10.333 2.77 16.417 1.80 22.17 0.72 4.633 <td>ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 ID= 1 DT= 5.0 min NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN ' TIME RAIN ' TIME RAIN hrs mm/hr hrs mm/hr how mm/hr 0.00 (6.167 0.96 12.250 73.60 18.33 1.08 0.00 (6.250 0.96 12.233 8.67 18.42 1.08 0.250 0.00 (6.500 1.08 12.437 8.66 18.50 1.08 0.250 0.00 (6.533 1.08 12.417 8.66 18.50 1.08 0.017 1.08 12.500 8.66 18.58 1.08 0.016 (6.500 1.08 12.543 8.66 18.57 1.08 0.66 (6.500 1.08 12.583 4.45 18.83 1.08 0.66 (6.570 1.08 12.579 8.66 18.50 1.08 0.66 (6.750 1.08 12.590 8.66 18.57 1.08 0.66 (6.750 1.08 12.590 8.66 18.63 1.08 0.66 (6.750 1.08 12.591 4.45 19.00 1.08 0.66 (6.750 1.08 12.917 4.45 19.00 1.08 0.66 (7.006 1.08 13.083 4.45 19.07 1.08 0.66 (7.006 1.08 13.167 4.45 19.17 1.08 0.66 (7.600 1.08 13.167 4.45 19.17 1.08 0.66 (7.66 7.167 1.08 13.162 4.45 19.17 1.08 0.66 (7.66 7.167 1.08 1</td>	ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 ID= 1 DT= 5.0 min NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN ' TIME RAIN ' TIME RAIN hrs mm/hr hrs mm/hr how mm/hr 0.00 (6.167 0.96 12.250 73.60 18.33 1.08 0.00 (6.250 0.96 12.233 8.67 18.42 1.08 0.250 0.00 (6.500 1.08 12.437 8.66 18.50 1.08 0.250 0.00 (6.533 1.08 12.417 8.66 18.50 1.08 0.017 1.08 12.500 8.66 18.58 1.08 0.016 (6.500 1.08 12.543 8.66 18.57 1.08 0.66 (6.500 1.08 12.583 4.45 18.83 1.08 0.66 (6.570 1.08 12.579 8.66 18.50 1.08 0.66 (6.750 1.08 12.590 8.66 18.57 1.08 0.66 (6.750 1.08 12.590 8.66 18.63 1.08 0.66 (6.750 1.08 12.591 4.45 19.00 1.08 0.66 (6.750 1.08 12.917 4.45 19.00 1.08 0.66 (7.006 1.08 13.083 4.45 19.07 1.08 0.66 (7.006 1.08 13.167 4.45 19.17 1.08 0.66 (7.600 1.08 13.167 4.45 19.17 1.08 0.66 (7.66 7.167 1.08 13.162 4.45 19.17 1.08 0.66 (7.66 7.167 1.08 1

٦Г

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.417 0.96 11.500 5.77 17.583 1.08 23.67 0.72 5.500 0.96 11.583 5.77 17.567 1.08 23.75 0.72 5.583 0.96 11.667 5.77 17.750 1.08 23.83 0.72 5.667 0.96 11.750 5.77 17.750 1.08 23.93 0.72 5.750 0.96 11.833 17.80 17.917 1.08 24.00 0.72 5.833 0.96 11.917 17.80 18.000 1.08 24.08 0.72 5.917 0.96 12.000 17.80 18.083 1.08 24.17 0.72 6.000 0.96 12.083 73.59 18.167 1.08 24.25 0.72 6.083 0.96 12.167 73.60 18.250 1.08 ULL 24.25 0.72 6.083 0.96 12.167 73.60 18.250 1.08 ULL 24.25 0.72 6.083 0.96 12.33 RUNOFF VOLME (mm) = 19.756 TOTAL RAINFALL (mm) = 60.130 RUNOFF COEFFICIENT = 0.329 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
	CALIB NASHYD (0005) Area (ha)= 2.29 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00
3.500 0.78 9.583 1.92 15.667 1.80 21.75 0.72 3.583 0.78 9.667 1.92 15.750 1.80 21.83 0.72 3.667 0.78 9.750 1.92 15.833 1.80 21.92 0.72 3.657 0.78 9.750 1.92 15.833 1.80 21.92 0.72 3.750 0.78 9.833 2.16 15.917 1.80 22.00 0.72 3.750 0.78 9.917 2.16 16.900 1.80 22.08 0.72	NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.667 0.96 11.750 5.77 17.833 1.08 23.92 0.72 5.759 0.96 11.833 17.80 17.917 1.08 24.00 0.72 5.833 0.96 11.917 17.80 18.000 1.08 24.08 0.72 5.917 0.96 12.000 17.80 18.083 1.08 24.17 0.72 6.000 0.96 12.083 73.59 18.167 1.08 24.25 0.72 6.083 0.96 12.167 73.60 18.250 1.08 24.25 0.72 6.083 0.96 12.167 73.60 18.250 1.08 24.25 0.72 1.011 Hyd Qpeak (cms)= 0.219 PEAK FLOW (cms)= 0.070 (1) TIME TO PEAK (hrs)= 12.500 RUNOFF VOLME (mm)= 19.824 TOTAL RAINFALL (mm)= 60.130 RUNOFF COEFFICIENT = 0.330 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
3.167 0.78 9.250 1.68 15.333 1.80 21.42 0.72 3.250 0.78 9.333 1.92 15.417 1.80 21.58 0.72 3.333 0.78 9.417 1.92 15.500 1.80 21.58 0.72 3.417 0.78 9.500 1.92 15.583 1.80 21.67 0.72 3.500 0.78 9.583 1.92 15.667 1.80 21.75 0.72 3.583 0.78 9.667 1.92 15.750 1.80 21.75 0.72 3.667 0.78 9.750 1.92 15.783 1.80 21.83 0.72 3.667 0.78 9.750 1.92 15.791 1.80 21.02 0.72 3.675 0.78 9.917 2.16 16.083 1.80 22.17 0.72 3.833 0.78 9.917 2.16 16.083 1.80 22.17 0.72 4.060 0.78 10.080 2.16 16.163 1.80 22.17 0.72	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

V V I SSSSS U U A L (v 6.2.2008) V V I SS U U A L (v 6.2.2008) V V I SS U U A L V V I SS U U A L V V I SS U U A L V V I SSS U U A L V V I SSSS U U A L 000 T T H H Y M 000 000 T T H H Y M 000 Developed and Distributed by Smart City Water Inc Copyright 2007 - 2021 Smart City Water Inc All rights reserved. #***** DETAILED OUTPUT***** Input filename: C:\Program Files (x86)\Visual OTHYMO 6.2\V02\voin.dat Output filename:<	Bab56956-7981-442d-9ed6-5a18ca9f22ac\44344e77 Ptotal= 79.65 mm Comments: H. Syr 24hr 15min SCS Type II TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN ITIME RAIN ITIME RAIN INF mm/hr hrs m/hr hrs 1.43<
DATE: 08-23-2022 TIME: 11:47:06 USER: COMMENTS:	CALIB Area (ha)= 4.32 Curve Number (CN)= 74.0 ID=1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.36 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN hrs<
0.590 0.88 6.583 1.43 12.667 11.47 18.75 1.43 0.667 0.88 6.675 1.43 12.759 11.47 18.83 1.43 0.667 0.88 6.857 1.43 12.759 11.47 18.83 1.43 0.676 0.88 6.837 1.43 12.917 5.83 19.00 1.43 0.833 0.88 6.917 1.43 13.000 5.89 19.25 1.43 1.000 0.88 7.083 1.43 13.167 5.89 19.33 1.43 1.603 0.88 7.167 1.43 13.325 5.89 19.35 1.43 1.67 0.88 7.143 13.53 4.30 19.56 1.43 1.433 0.88 7.56 1.75 13.58 4.30 19.67 1.43 1.67 0.88 7.56 1.75 13.817 3.35 19.92 1.43 1.431 1.467 0.88 7.55 1.75 13.917 3.52 0.06 1.43	$\frac{4.667}{1.27} \begin{bmatrix} 10.759 & 3.66 & 16.833 & 1.43 & 22.92 & 0.96 \\ 4.759 & 1.27 & 10.833 & 4.94 & 16.917 & 1.43 & 23.08 & 0.96 \\ 4.833 & 1.27 & 10.917 & 4.94 & 17.060 & 1.43 & 23.08 & 0.96 \\ 5.090 & 1.27 & 11.083 & 4.94 & 17.167 & 1.43 & 23.25 & 0.96 \\ 5.083 & 1.27 & 11.167 & 4.94 & 17.263 & 1.43 & 23.25 & 0.96 \\ 5.167 & 1.27 & 11.259 & 4.94 & 17.333 & 1.43 & 23.24 & 0.96 \\ 5.259 & 1.27 & 11.259 & 4.94 & 17.333 & 1.43 & 23.24 & 0.96 \\ 5.333 & 1.27 & 11.477 & 7.65 & 17.760 & 1.43 & 23.58 & 0.96 \\ 5.47 & 1.27 & 11.483 & 7.65 & 17.483 & 1.43 & 23.26 & 0.96 \\ 5.890 & 1.27 & 11.583 & 7.65 & 17.667 & 1.43 & 23.58 & 0.96 \\ 5.890 & 1.27 & 11.583 & 7.65 & 17.667 & 1.43 & 23.26 & 0.96 \\ 5.690 & 1.27 & 11.578 & 7.65 & 17.760 & 1.43 & 23.26 & 0.96 \\ 5.675 & 1.27 & 11.779 & 7.65 & 17.783 & 1.43 & 23.26 & 0.96 \\ 5.675 & 1.27 & 11.791 & 7.25 & 17.667 & 1.43 & 23.27 & 0.96 \\ 5.667 & 1.27 & 11.791 & 7.25 & 17.667 & 1.43 & 23.27 & 0.96 \\ 5.675 & 1.27 & 11.677 & 7.65 & 17.783 & 1.43 & 23.29 & 0.96 \\ 5.691 & 1.27 & 11.271 & 23.58 & 18.060 & 1.43 & 24.06 & 0.96 \\ 5.917 & 1.27 & 12.080 & 23.58 & 18.083 & 1.43 & 24.17 & 0.96 \\ 6.083 & 1.27 & 12.2167 & 97.49 & 18.126 & 1.43 & 24.25 & 0.96 \\ 6.083 & 1.27 & 12.2167 & 97.49 & 18.250 & 1.43 & 24.25 & 0.96 \\ 10.96 & 1.071 & 12.080 & 97.48 & 18.168 & 1.43 & 24.17 & 0.96 \\ 6.083 & 1.27 & 12.590 & 1.43 & 24.25 & 0.96 \\ 10.96 & 1.071 & 12.680 & 1.25.90 & 1.43 & 24.25 & 0.96 \\ 10.96 & 1.071 & 12.680 & 1.25.90 & 1.43 & 24.25 & 0.96 \\ 10.96 & 1.07 & 0.00 & 1.07 & 12.33 & 0.07 Ve Number & (Ch) = 74.0 \\ 10.9 & 1.07 & A.01 MFALL & (mm) = & 7.00 & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr 0.083 0.00 6.167 1.27 12.250 97.49 18.33 1.43 0.167 0.00 6.250 1.27 12.333 11.48 18.42 1.43 0.250 0.00 6.333 1.43 12.417 18.50 1.43 0.333 0.88 6.417 1.43 12.500 11.47 18.50 1.43 0.417 0.88 6.500 1.43 12.581 11.47 18.50 1.43 0.500 0.88 6.563 1.43 12.667 11.47 18.75 1.43 0.580 0.88 6.667 1.43 12.583 1.43 18.42 1.43 0.560 0.88 6.583 1.43 12.583 1.47 18.51 1.43 0.560 0.88 6.590 1.43 12.583 1.47 18.75 1.43 0.560 0.88 6.670 1.43 12.583 1.43 18.42 1.43 0.567 0.88 6.670 1.43 12.583 1.43 14.7 18.75 1.43 0.560 0.88 6.670 1.43 12.917 5.89 19.00 1.43 0.750 0.88 6.831 1.43 13.000 5.89 19.00 1.43 0.917 0.88 7.000 1.43 13.083 5.89 19.17 1.43
1.000 0.88 7.003 1.43 13.167 5.89 19.25 1.43 1.083 0.88 7.157 1.43 13.334 4.30 19.25 1.43 1.167 0.88 7.250 1.33 1.3417 4.30 19.50 1.43 1.250 0.88 7.333 1.75 13.5417 4.30 19.58 1.43 1.433 0.88 7.560 1.75 13.583 4.30 19.57 1.43 1.583 0.88 7.667 1.75 13.750 4.30 19.75 1.43 1.667 0.88 7.750 1.75 13.750 4.30 19.83 1.43 1.677 0.88 7.750 1.75 13.407 3.35 20.001 1.43 1.684 0.88 7.931 1.75 14.003 3.35 20.001 1.43 1.917 0.88 8.000 1.75 14.403 3.35 20.001 1.43 2.0000 0.88 8.003 1.75 14.403 3.35 20.125 1.43 2.0000 0.88 8.033 1.75 14.433 2.39 20.56 0.96 2.167 0.88 8.250 1.75 14.433 2.39 20.56 0.96 2.477 1.44 8.477 2.07 14.450 2.39 20.58 0.96 2.477 1.64 8.579 2.07 14.453 2.39 20.77 0.96 2.590	$\frac{5.167 1.27 11.250 4.94 17.333 1.43 23.42 0.96}{5.250 1.27 11.333 7.65 17.417 1.43 23.58 0.96}{5.533 1.27 11.477 7.65 17.590 1.43 23.58 0.96}{5.447 1.27 11.500 7.65 17.583 1.43 23.67 0.96}{5.583 1.27 11.667 7.65 17.583 1.43 23.75 0.96}{5.569 1.27 11.533 23.57 17.67 1.43 23.80 0.96}{5.575 0.127 11.833 23.57 17.917 1.43 23.92 0.96}{5.575 0.127 11.833 23.57 17.917 1.43 24.00 0.96}{5.513 1.27 11.27 12.083 97.48 18.000 1.43 24.08 0.96}{5.5917 1.27 12.283 97.48 18.167 1.43 24.17 0.96}{6.090 1.27 12.083 97.48 18.167 1.43 24.25 0.96}{6.090 1.27 12.083 97.48 18.167 1.43 24.25 0.96}{6.090 1.27 12.083 97.48 18.167 1.43 24.25 0.96}{6.090 1.27 12.083 97.48 18.167 1.43 24.25 0.96}{6.091 1.27 12.083 97.48 18.167 1.43 24.25 0.96}{6.093 1.27 12.283 97.48 18.167 1.43 24.25 0.96}{6.093 1.27 12.083 97.48 18.167 1.43 24.25 0.96}{6.093 1.27 12.083 97.48 18.167 1.43 24.25 0.96}{6.093 1.27 12.083 97.48 18.167 1.43 24.25 0.96}{6.093 1.27 12.083 97.48 18.167 1.43 24.17 0.96}{6.093 1.27 12.083 97.48 18.167 1.43 24.17 0.96}{6.093 1.02 10.2559 17.417 14.79 18.256 1.43 1.43 1.43 1.41 $

1.2590.887.3331.7513.4174.3019.591.431.3330.887.4171.7513.5904.2019.671.431.5000.887.5901.7513.674.2019.751.431.5000.887.5901.7513.674.2019.751.431.6670.887.5931.7513.8333.3519.921.431.6770.887.7901.7513.8333.3520.081.431.6330.887.9171.7514.0833.3520.101.431.8330.888.79171.7514.0833.3520.121.432.0900.888.0901.7514.1753.3520.251.432.0900.888.0901.7514.1432.3920.650.962.1670.888.2591.7514.332.3920.650.962.3331.048.672.0714.5932.3920.670.962.4371.048.5332.0714.6672.3921.750.962.6671.048.7592.0714.6832.3921.1250.962.6671.048.7592.26714.932.1921.990.962.7591.048.832.2315.6832.3921.1250.962.6671.048.7592.26714.932.1921.990.962.6671.04 <t< th=""><th></th></t<>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.667 1.27 11.750 7.65 17.833 1.43 23.92 0.96 5.750 1.27 11.833 23.57 17.917 1.43 24.08 0.96 5.833 1.27 12.080 23.58 18.009 1.43 24.08 0.96 6.080 1.27 12.083 97.48 18.167 1.43 24.25 0.96 6.083 1.27 12.167 97.49 18.250 1.43 Unit Hyd Qpeak (cms)= 0.219 PEAK FLOM (cms)= 0.117 (1) TIME TO PEAK (mm)= 79.650 RUNGFF VOLUM (mm)= 79.650 RUNGFF VOLUM (mm)= 79.650 RUNGFF COLFUCENT = 0.409 (1) PEAK FLOM DOES NOT INCLUDE BASEFLOW IF ANY.

<pre></pre>	Bab56956-7981-44cd-9ed6-5a18ca9f22ac\94443e77 Comments: I. 10yr 24hr 15min SCS Type TINE RAIN TIME RAIN 'TIME RAIN 'TIME RAIN TIME RAIN TIME RAIN 'TIME RAIN TIME RAIN 'TIME 'TIME <td'time< td=""> 'TIME 'TIME<</td'time<>
DATE: 08-23-2022 TIME: 11:47:06	
COMMENTS:	NASHYD (0001) Area (ha)= 4.32 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00
** SIMULATION : I . 10yr 24hr 15min SCS Type I ** *** SIMULATION : I . 10yr 24hr 15min SCS Type I ** *** READ STORM Filename: C:\Users\kswain\AppD ata\Local\Temp\	TIME RAIN TIME RAIN <th< td=""></th<>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.667 1.48 10.750 4.26 16.833 1.67 22.92 1.11 4.750 1.48 10.833 5.74 16.917 1.67 23.00 1.11 4.833 1.48 10.917 5.74 17.000 1.67 23.08 1.11 4.917 1.48 11.000 5.74 17.080 1.67 23.15 1.11 5.000 1.48 11.080 5.74 17.167 1.67 23.25 1.11 5.000 1.48 11.250 5.74 17.350 1.67 23.25 1.11 5.167 1.48 11.250 5.74 17.350 1.67 23.42 1.11 5.250 1.48 11.333 8.90 17.417 1.67 23.58 1.11 5.333 1.48 11.47 8.90 17.500 1.67 23.58 1.11 5.583 1.48 11.47 8.90 17.583 1.67 23.67 1.11 5.5667 1.48 11.533 8.90 17.576 1.67 23.67 1.11 5.590 1.48 11.533 8.90 17.560 1.67 23.67 1.11 5.590 1.48 11.750 8.90 17.750 1.67 23.75 1.11 5.667 1.48 11.750 8.90 17.750 1.67 23.78 1.11 5.667 1.48 11.057 8.90 17.750 1.67 23.78 1.11 5.683 1.48 11.4067 8.90 17.750 1.67 23.78 1.11 5.683 1.48 11.067 8.90 17.672 1.67 23.72 1.11 5.600 1.48 11.200 27.43 18.000 1.67 24.00 1.11 5.917 1.48 12.000 27.43 18.000 1.67 24.00 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.08 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.08 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.02 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.12 1.11 5.917 1.48 12.000 27.43 18.020 1.67 24.12 1.11 6.000 1.48 12.167 113.42 18.250 1.67 1.11 Unit Hyd Qpeak (cms)= 0.458 PEAK FLOW (cms)= 0.310 (1) TIME TO PEAK (hrs)= 12.500 RUMOFF VOLUME (mm)= 92.660 RUMOFF VOLUME (mm)= 92.660 RUMOFF VOLUME (mm)= 92.660 RUMOFF VOLUME (mm)= 92.660 RUMOFF VOLUME (mm)= 535
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALIB NASHYD (0002) Area (ha)= 13.33 Curve Number (CN)= 74.0 ID=1 DT=5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.62 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.083 0.00 6.167 1.48 12.250 13.342 18.33 1.67 0.167 0.00 6.250 1.48 12.230 13.341 18.50 1.67 0.333 1.62 6.417 1.67 12.503 13.34 18.58 1.67 0.417 1.62 6.590 1.67 12.583 13.34 18.67 1.67 0.583 1.62 6.667 1.67 12.683 1.341 18.58 1.67 0.583 1.62 6.667 1.67 12.683 3.34 18.83 1.67 0.6667 1.62 6.750 1.67 12.283 3.686 18.92 1.67

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>4.917 1.48 11.000 5.74 17.083 1.67 23.17 1.11 5.000 1.48 11.083 5.74 17.167 1.67 23.25 1.11 5.083 1.48 11.167 5.74 17.250 1.67 23.33 1.11 5.167 1.48 11.250 5.74 17.333 1.67 23.42 1.11 5.250 1.48 11.333 8.90 17.417 1.67 23.50 1.11 5.437 1.48 11.500 8.90 17.500 1.67 23.58 1.11 5.437 1.48 11.500 8.90 17.580 1.67 23.57 1.11 5.583 1.48 11.667 8.90 17.583 1.67 23.57 1.11 5.583 1.48 11.667 8.90 17.583 1.67 23.92 1.11 5.5667 1.48 11.583 2.7.43 17.917 1.67 23.92 1.11 5.5667 1.48 11.1833 2.7.43 17.917 1.67 23.92 1.11 5.750 1.48 11.917 27.43 18.000 1.67 24.00 1.11 5.833 1.48 11.917 27.43 18.000 1.67 24.00 1.11 5.833 1.48 12.167 113.42 18.033 1.67 24.17 1.11 6.083 1.48 12.167 113.42 18.250 1.67 Unit Hyd Qpeak (cms)= 0.821 PEAK FLOW (cms)= 0.643 (1) TIME TO PEAK (hrs)= 12.750 RUNOFF COLFFICIENT = 0.453 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>
3.000 1.20 9.083 2.59 15.167 2.78 21.25 1.11 3.083 1.20 9.250 2.59 15.333 2.78 21.33 1.11 3.250 1.20 9.333 2.97 15.347 2.78 21.33 1.11 3.250 1.20 9.333 2.97 15.477 2.78 21.59 1.11 3.431 1.20 9.560 2.97 15.590 2.78 21.59 1.11 3.417 1.20 9.560 2.97 15.570 2.78 21.67 1.11 3.500 1.20 9.667 2.97 15.677 2.78 21.67 1.11 3.667 1.20 9.750 2.97 15.833 2.78 21.67 1.11 3.633 1.20 9.750 2.97 15.833 2.78 21.67 1.11 3.633 1.20 9.750 2.97 15.833 2.78 21.67 1.11 3.667 1.20 9.750 2.97 15.833 2.78 21.67 1.11 3.633 1.20 9.750 2.97 15.833 2.78 21.83 1.11 3.633 1.20 9.750 2.97 15.833 2.78 22.90 1.11 3.637 1.20 9.917 3.34 16.083 2.78 22.98 1.11 4.983 1.20 10.47 3.34 16.6250 2.78 22.55 1.11 4.983 1	CALIB Area (ha)= 3.05 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs <mm hr<="" td=""> hrs<mm hr<="" td=""> hrs<mm hr<="" td=""> hrs<mm hr<="" td=""> 0.083 0.00 6.167 1.48 12.250 13.42 1.67 0.167 0.00 6.250 1.48 12.433 13.34 18.50 1.67 0.417 1.02 6.690 1.67 12.581 13.342 18.58 1.67 0.433 1.02 6.417 1.67 12.580 13.34 18.57 1.67 0.500 1.02 6.583 1.67 12.417 13.34 18.57 1.67 0.501 1.02 6.750 1.67 12.583 13.34 18.75 1.67 0.503 1.02 6.783 1.67 1</mm></mm></mm></mm>
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

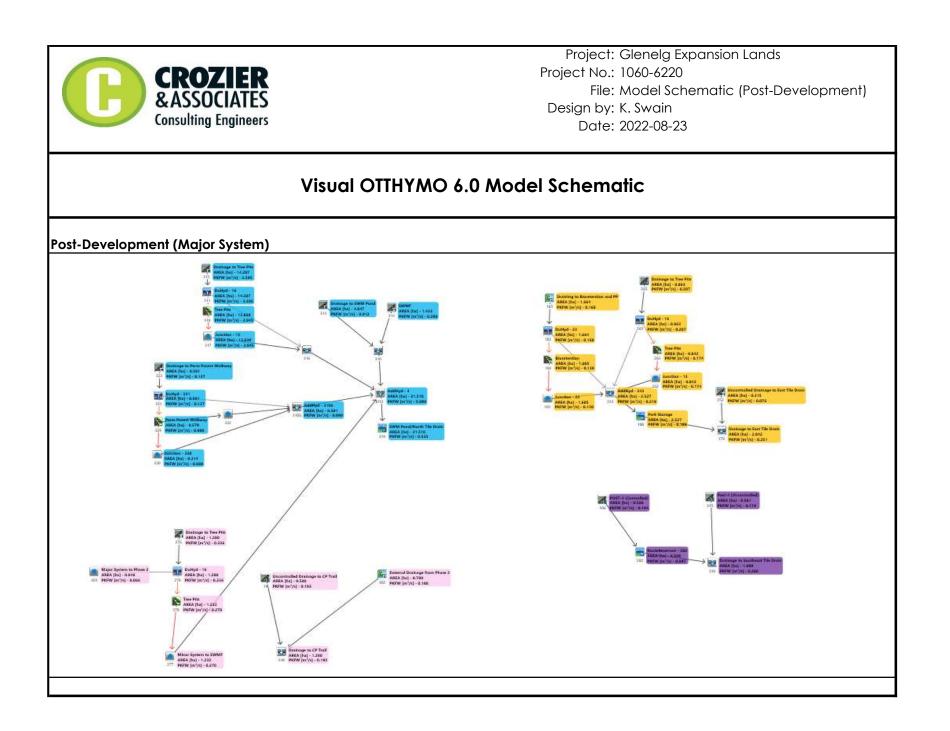
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{5.417}{1.48} 11.500 + 8.90 + 17.583 + 1.67 + 23.67 + 1.11 \\ 5.500 + 1.48 + 11.583 + 8.90 + 17.637 + 1.67 + 23.75 + 1.11 \\ 5.583 + 1.48 + 11.583 + 8.90 + 17.353 + 1.67 + 23.83 + 1.11 \\ 5.583 + 1.48 + 11.539 + 2.743 + 17.917 + 1.67 + 24.80 + 1.11 \\ 5.583 + 1.48 + 11.833 + 27.43 + 17.917 + 1.67 + 24.80 + 1.11 \\ 5.610 + 1.48 + 13.900 + 27.43 + 17.917 + 1.67 + 24.80 + 1.11 \\ 5.610 + 1.48 + 13.900 + 27.43 + 18.903 + 1.67 + 24.49 + 1.11 \\ 5.610 + 1.48 + 13.900 + 27.43 + 18.903 + 1.67 + 24.49 + 1.11 \\ 5.610 + 1.48 + 12.903 + 13.41 + 18.157 + 16.67 + 24.25 + 1.11 \\ 6.683 + 1.48 + 12.167 + 113.42 + 18.250 + 1.67 + 24.25 + 1.11 \\ 6.683 + 1.48 + 12.167 + 113.42 + 18.250 + 1.67 + 24.25 + 1.11 \\ 10.11 + 10 + 26.48 + (cms) = 0.574 + 18.803 + 10.67 + 24.45 + 1.11 \\ 10.11 + 10 + 26.48 + (cms) = 0.574 + 18.803 + 10.67 + 24.45 + 11.11 \\ 10.11 + 10 + 26.48 + (cms) = 0.474 + 18.250 + 1.67 + 11.84 + 11.833 + 1.67 + 11.84 + 11.833 + 11.67 + 11.84 + 11.833 + 11.67 + 11.84 + 11.833 + 11.67 + 11.84 + 11.833 + 11.67 + 11.84 + 11.835 + 11.84 + $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>5.667 1.48 [11.750 8.90 17.833 1.67 23.92 1.11 5.750 1.48 [11.917 27.43 17.917 1.67 24.00 1.11 5.917 1.48 [12.082 27.43 18.083 1.67 24.17 1.11 6.080 1.48 [12.187 113.42 18.250 1.67]</pre>

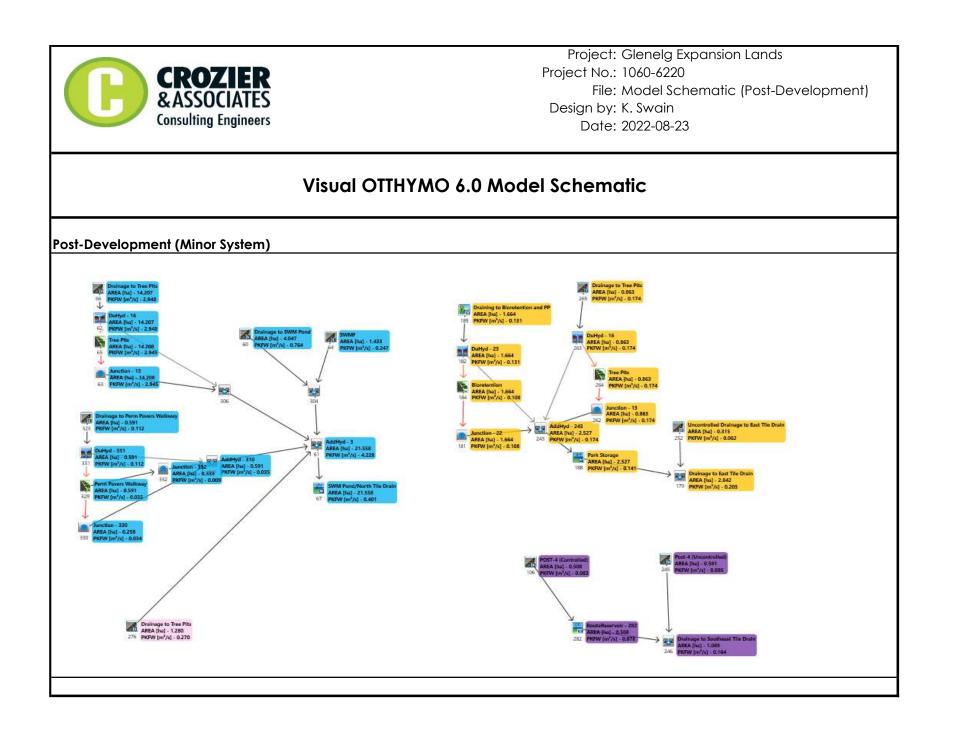
DIR:	V V V V SSSSS U U A L (v 6.2.2008) V V I SSS U U A L V V I SS U U A L V V I SS U U A L V V I SSS U U A L V V I SSS U U A L V V I SSSS UUUUUU A LLLLL 000 T T H H Y M 000 000 T T H H Y M 000 Developed and Distributed by Smart City Water Inc Copyright 2007 - 2021 Smart City Water Inc All rights reserved. ****** Input filename: C:\Versexiswain\AppData\Local\Coral\Civica\VH5\Se7288f9f-3516-4350-9cc9-216f91ea9b42\20543 248-4dd9-46be-b608-32ce2c7c1d45\scena <td< th=""><th>Bab56956-7981-44cd-9ed6-5a18ca9f22ac\28d28256 Comments: J. ZSyr Z4hr TSmin SCS Type II TIME RAIN TIME RAIN 'TIME RAIN 'TIME RAIN 'TIME RAIN 'N 'N mm/hr 'hrs mm/hr 0.00 0.00 6.25 1.96 12.75 8.05 19.00 1.96 0.50 1.20 6.50 1.96 13.26 5.88 19.25 1.96 0.50 1.20 7.75 1.96 13.25 5.88 19.75 1.96 0.75 1.20 7.75 2.39 13.57 4.57 20.00 1.96 1.75 1.20 7.75 2.39 13.75 4.57 20.00 1.96 1.50 1.20 7.75 2.39 13.26 20.55 1.31 2.50 1.41 8.75 3.05 15.00 3.26 21.05 1.31 2.50 1.41</th></td<>	Bab56956-7981-44cd-9ed6-5a18ca9f22ac\28d28256 Comments: J. ZSyr Z4hr TSmin SCS Type II TIME RAIN TIME RAIN 'TIME RAIN 'TIME RAIN 'TIME RAIN 'N 'N mm/hr 'hrs mm/hr 0.00 0.00 6.25 1.96 12.75 8.05 19.00 1.96 0.50 1.20 6.50 1.96 13.26 5.88 19.25 1.96 0.50 1.20 7.75 1.96 13.25 5.88 19.75 1.96 0.75 1.20 7.75 2.39 13.57 4.57 20.00 1.96 1.75 1.20 7.75 2.39 13.75 4.57 20.00 1.96 1.50 1.20 7.75 2.39 13.26 20.55 1.31 2.50 1.41 8.75 3.05 15.00 3.26 21.05 1.31 2.50 1.41
0.500 1.20 6.583 1.00 12.67 15.77 18.75 1.06 0.500 1.20 6.583 1.00 12.67 15.77 18.75 1.06 0.500 1.20 6.583 1.00 12.67 15.77 18.75 1.06 0.500 1.20 6.583 1.00 12.67 15.77 18.75 1.06 0.500 1.20 6.583 1.00 12.67 18.75 1.06 0.500 1.20 6.583 1.00 12.67 18.75 1.06 0.500 1.20 6.583 1.00 12.67 18.75 1.06 0.500 1.20 6.583 1.00 12.67 18.75 1.06 0.500 1.20 6.583 1.00 12.67 18.75 1.06 0.500 1.20 6.583 1.00 12.67 18.75 1.06 0.500 1.20 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01	DATE: 08-23-2022 TIME: 11:47:07	CALIB
************************************	COMMENTS:	ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.36
mean hrs mm/hr hrs m/hr hrs hrs <thr> hrs hrs</thr>	***************************************	
0.838 1.208 0.667 1.96 12.750	READ STORM Filename: C:\Users\kswain\AppD	hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.083 0.00 6.167 1.74 12.250 133.17 18.33 1.96 0.167 0.00 6.250 1.74 12.333 15.68 18.42 1.96 0.250 0.00 6.333 1.96 1.24.37 15.67 18.50 1.96 0.333 1.20 6.417 1.96 12.471 15.67 18.58 1.96
3.417 1.41 9.500 3.48 15.563 3.26 21.67 1.31 3.500 1.41 9.583 3.48 15.667 3.26 21.75 1.31 3.667 1.41 9.667 3.48 15.578 3.26 21.83 1.31 3.667 1.41 9.833 3.92 15.917 3.26 22.09 1.31 3.750 1.41 9.833 3.92 15.917 3.26 22.09 1.31 3.833 1.41 9.917 3.92 16.000 3.26 22.08 1.31 3.917 1.41 10.000 3.26 22.17 1.31 TRMSFORMED HYETOGRAPH	0.583 1.20 6.667 1.96 12.750 15.67 18.83 1.96 1.96 0.667 1.20 6.750 1.96 12.833 8.05 18.92 1.96 0.750 1.20 6.917 1.96 12.917 8.05 19.00 1.96 0.813 1.20 7.083 1.96 13.033 8.05 19.17 1.96 1.000 1.20 7.083 1.96 13.167 8.05 19.13 1.96 1.167 1.20 7.250 1.96 13.333 5.88 19.42 1.96 1.250 1.20 7.333 2.39 13.417 5.88 19.58 1.96 1.417 1.20 7.560 2.39 13.583 5.88 19.67 1.96 1.583 1.20 7.676 2.39 13.876 5.88 19.67 1.96 1.583 1.20 7.590 2.39 13.597 5.88 19.67 1.96 1.583 1.20 7.583 2.39 13.475 2.00 1.96	4.759 1.74 [10.833 6.75 [15.917 1.96 [2.3.00 1.31 4.833 1.74 [10.917 6.75]7.000 1.96 [2.3.00 1.31 4.917 1.74 [11.000 6.75]7.083 1.96 [2.3.17 1.31 5.000 1.74 [11.083 6.75]7.168 1.96 [2.3.25 1.31 5.083 1.74 [11.167 6.75]7.7250 1.96 [2.3.33 1.31 5.167 1.74 [11.250 6.75]7.333 1.96 [2.3.25 1.31 5.167 1.74 [11.333 10.44 [17.17.196 [2.3.50 1.31 5.333 1.74 [11.417 10.44 [17.500 1.96 [2.3.58 1.31 5.417 1.74 [11.600 10.44 [17.580 1.96 [2.3.58 1.31 5.417 1.74 [11.607 10.44 [17.570 1.96 [2.3.75 1.31 5.580 1.74 [11.833 10.44 [17.67 1.96 [2.3.75 1.31 5.580 1.74 [11.833 10.44 [17.67 1.96 [2.3.92 1.31 5.580 1.74 [11.833 32.20 [17.917 1.96 [2.4.08 1.31 5.437 1.74 [11.000 32.20 [18.000 1.96 [24.08 1.31 5.917 1.74 [12.000 32.20 [18.000 1.96 [24.12 1.31 6.083 1.74 [12.083 133.16 [18.167 1.96 [24.25 1.31 6.083 1.74 [12.167 133.17]18.250 1.96] Unit Hyd Qpeak (cms)= 0.428 PEAK FLOW (cms)= 0.428 PEAK FLOW (cms)= 0.428 (1) PEAK (hrs)= 12.500 RUNOFF COLFFICIENT = 0.498 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

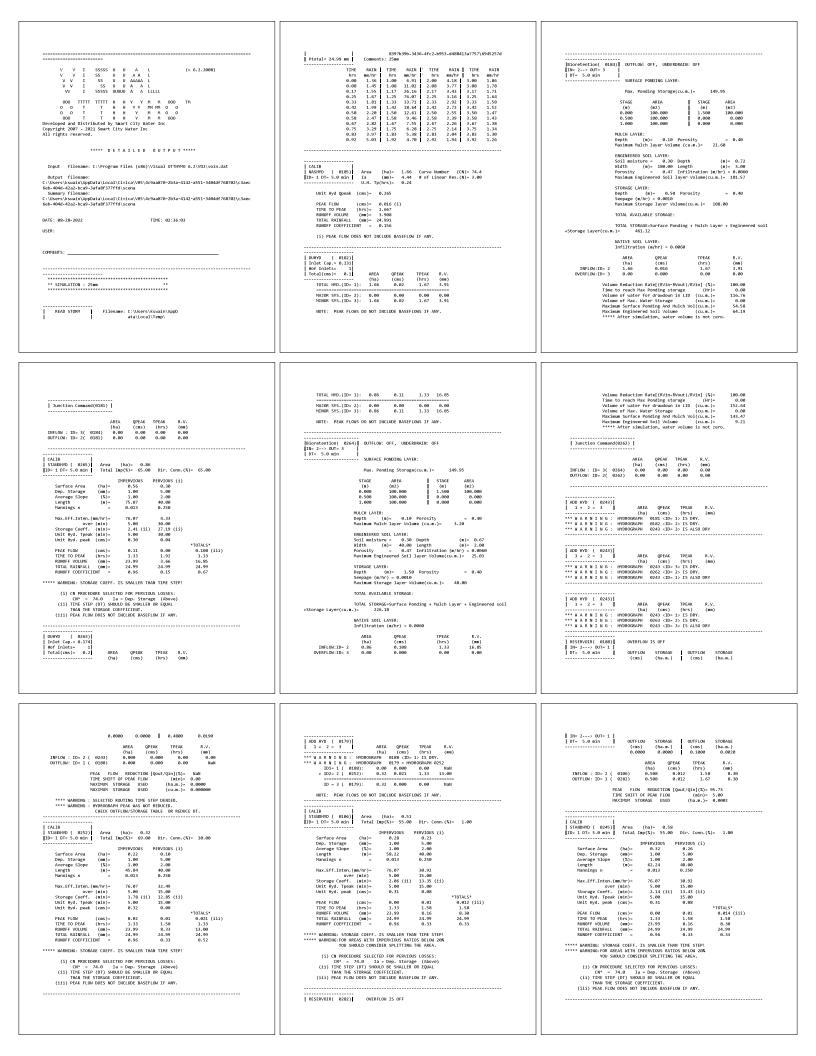
0.759 1.20 6.833 1.96 12.917 8.05 19.00 1.96 0.833 1.20 6.917 1.96 13.000 8.05 19.08 1.96 0.917 1.20 7.000 1.96 13.083 8.05 19.17 1.96 1.000 1.20 7.083 1.96 13.167 8.05 19.25 1.96 1.883 1.20 7.167 1.96 13.333 5.88 19.42 1.96 1.250 1.20 7.33 2.39 13.500 5.88 19.58 1.96 1.417 1.20 7.67 2.39 13.567 5.88 19.67 1.96 1.560 1.20 7.633 2.39 13.833 4.57 1.96 1.96 1.580 1.20 7.657 2.39 13.750 5.88 19.75 1.96 1.583 1.20 7.677 2.39 13.833 4.57 20.00 1.96 1.957 1.20 8.83 2.39 14.167 4.57 20.08 1.96	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TIME RAIN TIME RAIN ' Ims RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.083 0.00 6.167 1.74 12.256 133.17 18.33 1.96 0.167 0.00 6.259 1.74 12.233 15.67 18.42 1.96 0.250 0.00 6.333 1.96 12.417 15.67 18.58 1.96 0.433 1.20 6.417 1.96 12.500 15.67 18.57 1.96 0.417 1.20 6.563 1.96 12.67 18.67 1.96 0.500 1.20 6.563 1.96 12.67 18.75 1.96 0.667 1.20 6.683 1.96 12.917 8.05 19.00 1.96 0.750 1.92 6.917 1.66 13.000 8.05 19.08 1.96 0.917 1.20 7.000 1.9
1.667 1.206 7.759 2.38 31.833 4.57 19.92 1.96 1.750 1.206 7.917 2.39 14.000 4.57 20.08 1.96 1.917 1.206 8.000 2.39 14.000 4.57 20.08 1.96 2.000 1.206 8.002 2.39 14.167 4.57 20.25 1.96 2.083 1.206 8.167 2.39 14.560 4.57 20.25 1.36 2.167 1.206 8.250 2.39 14.560 4.57 20.25 1.31 2.167 1.206 8.250 2.39 14.583 3.26 20.596 1.31 2.333 1.41 8.417 2.83 14.583 3.26 20.57 1.31 2.580 1.41 8.583 2.83 14.676 3.26 20.83 1.31 2.560 1.41 8.583 2.63 14.676 3.26 20.92 1.31 2.563 1.41 8.570 2.83 14.670 3.26 21.08 1.31 2.667 1.41 8.750 2.83 14.672 3.26 21.08 1.31 2.667 1.41 8.750 2.83 14.673 3.26 21.08 1.31 2.667 1.41 8.750 3.65 15.673 3.26 21.08 1.31 2.917 1.44 9.000 3.05 15.000 3.26 21.57 1.31 2.933 <td>5.833 1.74 11.917 32.20 18.009 1.96 24.08 1.31 5.917 1.74 12.009 32.20 18.003 1.96 24.17 1.31 6.000 1.74 12.003 133.10 18.023 1.96 24.17 1.31 6.083 1.74 12.167 133.17 18.250 1.96 24.25 1.31 0.083 1.74 12.067 133.17 18.250 1.96 24.25 1.31 0.083 1.74 12.067 133.17 18.250 1.96 24.25 1.31 Unit Hyd Qpeak (cms)= 0.457 11 TIME TO PEAK (hrs)= 12.33 RUNOFF COEFFICIENT = 0.498 0.498 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 1.96 1.96 24.25 1.91 CALIB NASHYD (0004) Area (ha)= 3.00 Curve Number (CN)= 74.0 10 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 100 100 TEANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN MIN TIME RAIN MIN TIME STEP.</td>	5.833 1.74 11.917 32.20 18.009 1.96 24.08 1.31 5.917 1.74 12.009 32.20 18.003 1.96 24.17 1.31 6.000 1.74 12.003 133.10 18.023 1.96 24.17 1.31 6.083 1.74 12.167 133.17 18.250 1.96 24.25 1.31 0.083 1.74 12.067 133.17 18.250 1.96 24.25 1.31 0.083 1.74 12.067 133.17 18.250 1.96 24.25 1.31 Unit Hyd Qpeak (cms)= 0.457 11 TIME TO PEAK (hrs)= 12.33 RUNOFF COEFFICIENT = 0.498 0.498 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 1.96 1.96 24.25 1.91 CALIB NASHYD (0004) Area (ha)= 3.00 Curve Number (CN)= 74.0 10 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00 100 100 TEANSFORMED TO 5.0 MIN. TIME STEP. TIME RAIN MIN TIME RAIN MIN TIME STEP.

1.2501.207.3332.2913.5005.8819.561.961.4171.267.5802.3913.5635.8819.671.961.4171.267.5802.3913.6755.8819.751.961.5831.267.6672.3913.8755.8819.781.961.6671.267.7572.3913.8374.5720.001.961.7501.207.8332.3914.1074.5720.041.961.9171.208.0802.3914.4034.5720.171.962.0681.288.0832.3114.4173.2624.5720.831.312.1671.208.1632.3814.4173.2624.561.312.5901.418.6692.3314.6673.2620.951.312.5901.418.6672.3614.4333.2611.312.5931.418.6333.6514.9173.2611.061.312.5901.418.6333.6514.9173.2611.061.312.5911.418.6373.2611.771.313.333.6081.419.6933.6515.6333.2611.771.313.6091.419.6933.6515.6333.2611.771.313.6091.419.6933.2611.771.313.333.6091.419.5833.48 <t< th=""><th><pre>5.417 1.74 [11.580 10.44 [17.633 1.96 [23.67 1.3] 5.583 1.74 [11.637 10.44 [17.750 1.96 [23.75 1.3] 5.667 1.74 [11.750 1.94 [17.750 1.96 [23.83 1.3] 5.750 1.74 [11.750 1.92 [1.96 [24.00 1.3] 5.633 1.74 [11.917 32.20 [18.003 1.96 [24.08 1.3] 5.917 1.74 [12.080 32.20 [18.083 1.96 [24.17 1.3] 6.608 1.74 [12.083 13.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 [1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 [1.74 [12.087 133.17 [18.36] RUMOFF VOLUME (mm)= 54.652 TOTAL RATHALL (mm)= 108.800 RUMOFF COEFFICIENT = 0.497 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. </pre></th></t<>	<pre>5.417 1.74 [11.580 10.44 [17.633 1.96 [23.67 1.3] 5.583 1.74 [11.637 10.44 [17.750 1.96 [23.75 1.3] 5.667 1.74 [11.750 1.94 [17.750 1.96 [23.83 1.3] 5.750 1.74 [11.750 1.92 [1.96 [24.00 1.3] 5.633 1.74 [11.917 32.20 [18.003 1.96 [24.08 1.3] 5.917 1.74 [12.080 32.20 [18.083 1.96 [24.17 1.3] 6.608 1.74 [12.083 13.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 [1.74 [12.087 133.17 [18.250 1.96 [24.17 1.3] 6.608 [1.74 [12.087 133.17 [18.36] RUMOFF VOLUME (mm)= 54.652 TOTAL RATHALL (mm)= 108.800 RUMOFF COEFFICIENT = 0.497 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. </pre>
1.5001.207.5832.3913.6675.8819.751.961.5831.207.6672.3913.8334.5719.231.961.7501.207.7502.3913.8334.5719.231.961.7501.207.8332.3913.9174.5720.001.961.9171.208.0602.3914.4034.5720.171.962.0831.208.1672.3914.1674.5720.331.312.1671.208.0832.3914.4173.2620.561.312.591.208.1332.3314.413.2620.561.312.501.208.1332.3314.413.2620.671.312.501.418.5832.3314.672.6220.831.312.6171.418.5832.3314.673.2620.671.312.6331.418.6672.3314.4793.2621.021.312.6671.418.5333.6515.1673.2621.171.313.6081.419.0603.6515.1673.2621.171.313.6091.419.6833.6515.1673.2621.171.313.6331.419.6673.4815.5673.2621.171.313.6611.449.5693.4815.6673.2621.171.313.6611.449.5	5.667 1.74 11.759 10.44 17.833 1.96 23.92 1.31 5.759 1.74 11.033 32.20 17.917 1.96 24.08 1.31 5.917 1.74 12.080 32.20 18.083 1.96 24.17 1.31 6.083 1.74 12.081 33.16 18.167 1.96 24.25 1.31 f.083 1.74 12.167 133.17 18.250 1.96 PEAK FLOW (cms)= 0.219 PEAK FLOW (cms)= 0.199 (1) TIME TO PEAK (hrs)= 12.580 RNOOFF COLMEE (mm)= 54.238 RNOOFF COEFFICIENT = 0.499 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

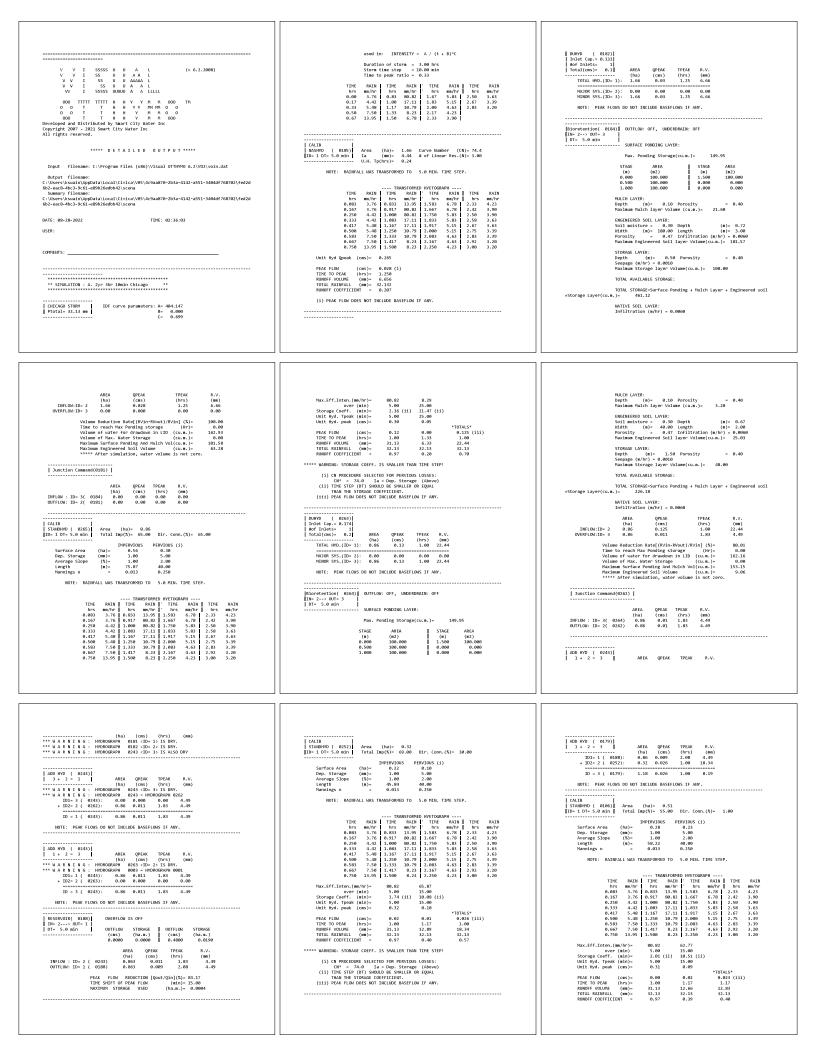
V V V X	Bab56956-7981-44cd-9ed6-5a18ca9f22ac\61904e13 Comments: K. 50yr 24hr 15min SCS Type II TIME RAIN 0.00 0.00 0.60 2.52 2.17 12.50 6.52 19.00 2.17 1.05 1.33 7.60 2.66 13.75 5.67 20.05 1.45 1.50 1.33 8.25
DATE: 08-23-2022 TIME: 11:47:07	
COMMENTS:	NASHYD (0001) Area (ha)= 4.32 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00
	NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
** SIMULATION : K. 50yr 24hr 15min SCS Type I ** *********************************	TIME RAIN TIME RAIN <th< td=""></th<>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>4.667 1.93 10.750 5.56 16.833 2.17 22.92 1.45 4.750 1.93 10.833 7.49 16.917 2.17 23.00 1.45 4.833 1.93 10.917 7.49 17.000 2.17 23.08 1.45 5.000 1.93 11.000 7.49 17.083 2.17 23.17 1.45 5.003 1.93 11.167 7.49 17.167 2.17 23.25 1.45 5.083 1.93 11.167 7.49 17.167 2.17 23.25 1.45 5.167 1.93 11.250 7.49 17.333 2.17 23.42 1.45 5.167 1.93 11.250 7.49 17.333 2.17 23.42 1.45 5.167 1.93 11.417 11.59 17.500 2.17 23.58 1.45 5.433 1.93 11.417 11.59 17.50 2.17 23.58 1.45 5.583 1.93 11.417 11.59 17.503 2.17 23.67 1.45 5.560 1.93 11.831 1.59 17.570 2.17 23.78 1.45 5.560 1.93 11.433 11.59 17.570 2.17 23.78 1.45 5.560 1.93 11.59 17.570 2.17 23.83 1.45 5.560 1.93 11.833 35.75 17.917 2.17 23.83 1.45 5.560 1.93 11.833 35.75 17.917 2.17 23.83 1.45 5.667 1.93 11.900 35.75 18.080 2.17 24.08 1.45 5.813 1.93 12.080 35.75 18.080 2.17 24.08 1.45 5.813 1.93 12.080 347.81 18.167 2.17 24.25 1.45 5.917 1.93 12.000 35.75 18.083 2.17 24.17 1.45 6.000 1.93 12.67 147.82 18.250 2.17 Unit Hyd Qpeak (cms)= 0.458 PEAK FLOW (cms)= 0.458 PEAK FLOW (cms)= 0.458 VINOFF VOLUME (mm)= 63.745 TOTAL RAINFALL (mm)= 120.770 RUMOFF COEFFICIENT = 0.528 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>
	CALIB

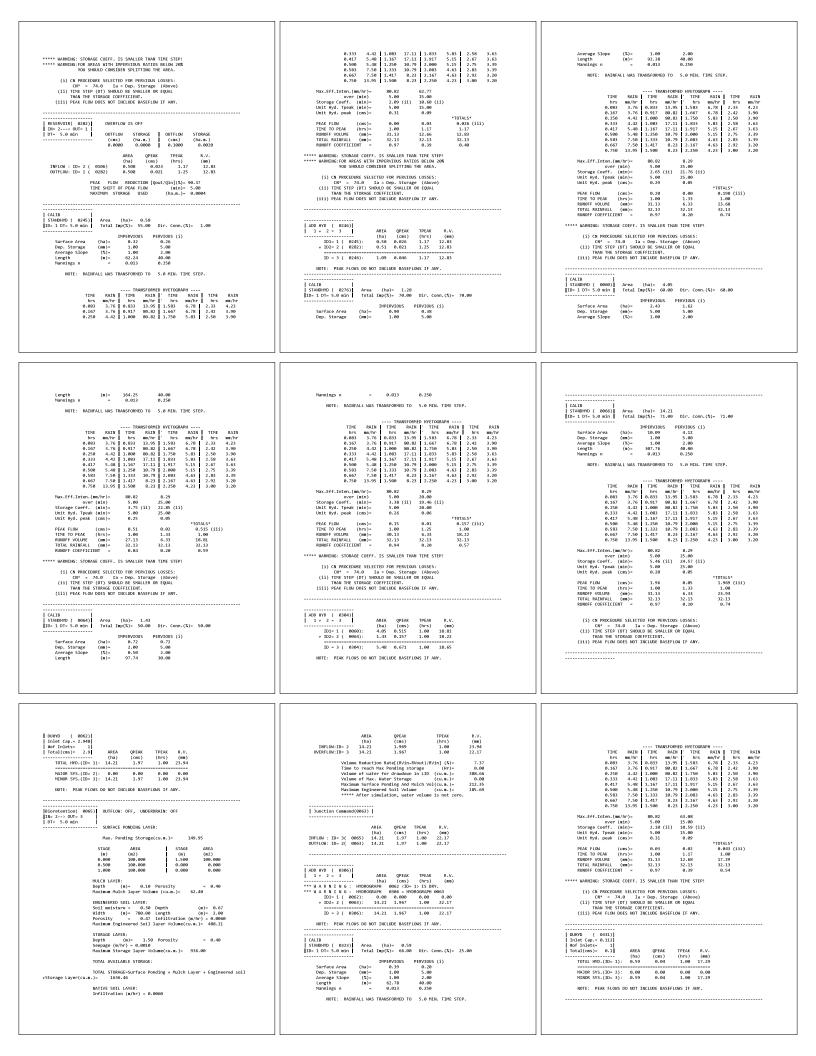

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>4.917 1.93 11.000 7.49 17.083 2.17 23.17 1.45 5.000 1.93 11.083 7.49 17.167 2.17 23.25 1.45 5.083 1.93 11.167 7.49 17.250 2.17 23.33 1.45 5.167 1.93 11.326 7.49 17.333 2.17 23.34 1.45 5.333 1.93 11.326 7.49 17.333 2.17 23.42 1.45 5.333 1.93 11.326 7.19 17.583 2.17 23.67 1.45 5.417 1.93 11.500 11.59 17.583 2.17 23.67 1.45 5.580 1.93 11.583 11.59 17.583 2.17 23.67 1.45 5.580 1.93 11.667 11.59 17.583 2.17 23.75 1.45 5.580 1.93 11.583 11.59 17.766 2.17 23.83 1.45 5.580 1.93 11.583 11.59 17.783 2.17 23.92 1.45 5.580 1.93 11.583 11.59 17.783 2.17 23.92 1.45 5.580 1.93 11.91 1.575 18.000 2.17 23.81 1.45 5.5667 1.93 11.91 1.97 51.75 18.000 2.17 24.08 1.45 5.575 0.193 11.91 73.575 18.000 2.17 24.08 1.45 5.517 1.93 12.060 35.75 18.083 2.17 24.17 1.45 6.083 1.93 12.167 147.82 18.250 2.17 Unit Hyd Qpeak (cms)= 0.821 PEAK FLOW (cms)= 0.990 (1) TIME TO PEAK (hrs)= 12.750 RUNOFF COEFFICIENT = 0.528 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>
3.000 1.57 9.083 3.38 15.167 3.62 21.33 1.45 3.083 1.57 9.250 3.38 15.333 3.62 21.42 1.45 3.250 1.57 9.250 3.88 15.333 3.62 21.42 1.45 3.333 1.57 9.417 3.86 15.500 3.62 21.58 1.45 3.333 1.57 9.417 3.86 15.500 3.62 21.58 1.45 3.417 1.57 9.500 3.86 15.563 3.62 21.75 1.45 3.690 1.57 9.570 3.86 15.570 3.62 21.92 1.45 3.691 1.57 9.667 3.86 15.750 3.62 21.92 1.45 3.670 1.57 9.833 4.35 15.917 3.62 22.00 1.45 3.631 1.57 9.917 4.35 16.060 3.62 22.17 1.45 3.833 1.57 10.083 4.35 16.67 3.62 22.57 1.45 4.000 1.57 10.633 4.35 16.67 3.62 22.57 1.45 4.167 1.57 10.633 4.35 16.670 2.17 22.58 1.45 4.683 1.57 10.633 5.56 16.590 2.17 22.58 1.45 4.683 1.93 10.675 5.56 16.570 2.17 22.57 1.45 4.690	CALTB [ALTB] [NASHYD (0003)] ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 74.0 ID= 1 DT= 5.0 min U.H. Tp(hrs)= 0.22 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr 0.083 0.00 6.167 1.93 12.250 147.82 18.33 2.17 0.167 0.00 6.357 1.13 17.41 18.42 2.17 0.520 0.00 6.333 2.17 12.417 17.39 18.50 2.17 0.333 1.33 6.417 2.17 12.500 17.39 18.58 2.17 0.540 1.33 6.583 2.17 12.667 17.39 18.57 2.17 0.580 1.33 6.667 2.17 12.283 8.94 18.92 2.17 0.580 1.33 6.691 2.17 12.283 8.94 18.92 2.17 0.580 1.33 6.691 2.17 12.833 8.94 19.00 2.17 0.647 1.33 6.917 2.17 12.833 8.94 19.00 2.17 0.631 1.33 6.617 2.17 12.833 8.94 19.08 2.17 0.631 1.33 7.000 2.17 13.083 8.94 19.17 2.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S.167 1.93 11.250 7.49 17.333 2.17 23.42 1.45 S.250 1.93 11.333 11.59 17.417 2.17 23.50 1.45 S.333 1.93 11.417 11.59 17.500 2.17 23.58 1.45 S.417 1.93 11.500 11.59 17.500 2.17 23.67 1.45 S.417 1.93 11.500 11.59 17.667 2.17 23.75 1.45 S.563 1.93 11.667 11.59 17.760 2.17 23.83 1.45 S.667 1.93 11.750 11.59 17.760 2.17 23.92 1.45 S.675 1.93 11.750 11.59 17.750 2.17 23.92 1.45 S.750 1.93 11.313 35.75 18.083 2.17 24.00 1.45 S.917 1.93 12.060 35.75 18.083 2.17 24.17 1.45 6.080 1.93 12.083 147.82 18.250 2.17 14.5

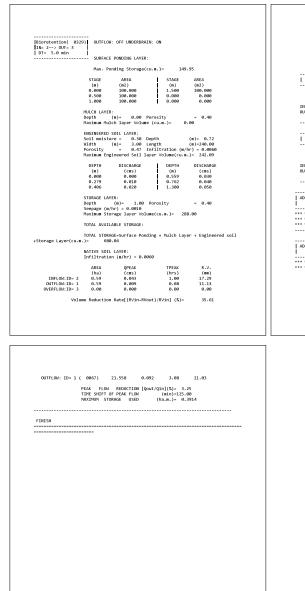

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 5.417 & 1.93 & 11.500 & 11.59 & 17.583 & 2.17 & 23.67 & 1.45 \\ 5.580 & 1.93 & 11.67 & 11.59 & 17.667 & 2.17 & 23.81 & 1.45 \\ 5.583 & 1.93 & 11.67 & 11.59 & 17.833 & 2.17 & 24.20 & 1.45 \\ 5.750 & 1.93 & 11.323 & 5.75 & 18.000 & 2.17 & 24.08 & 1.45 \\ 5.833 & 1.93 & 11.91 & 26.00 & 3.5.75 & 18.000 & 2.17 & 24.16 & 1.45 \\ 5.83 & 1.93 & 11.67 & 12.82 & 12.20 & 1.75 & 17.14 & 18.167 & 2.17 & 24.15 & 1.45 \\ 6.800 & 1.93 & 12.603 & 14.73 & 18.167 & 2.17 & 24.15 & 1.45 \\ 6.800 & 1.93 & 12.603 & 14.73 & 18.167 & 2.17 & 24.15 & 1.45 \\ 6.800 & 1.93 & 12.603 & 14.73 & 18.167 & 2.17 & 24.15 & 1.45 \\ 6.800 & 1.93 & 12.603 & 14.73 & 18.167 & 2.17 & 24.15 & 1.45 \\ 6.800 & 1.93 & 12.603 & 14.73 & 18.167 & 2.17 & 24.15 & 1.45 \\ 6.800 & 1.93 & 12.603 & 14.73 & 18.167 & 2.17 & 24.15 & 1.45 \\ 6.800 & 1.93 & 12.603 & 14.73 & 18.167 & 2.17 & 24.15 & 1.45 \\ 6.800 & 1.93 & 12.603 & 14.73 & 18.167 & 2.17 & 24.15 & 1.45 \\ 6.800 & 1.93 & 12.603 & 14.73 & 18.167 & 11.75 & 11.$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.667 1.93 11.750 11.59 17.833 2.17 23.92 1.45 5.750 1.93 11.933 35.75 17.917 2.17 24.08 1.45 5.833 1.93 11.9209 35.75 18.083 2.17 24.17 1.45 6.090 1.93 12.083 147.81 18.167 2.17 24.25 1.45 6.083 1.93 112.167 147.82 18.250 2.17 MUNGF VOLME (cms)= 0.234 (1) TIME TO PEAK (cms)= 0.234 (1) TIME TO PEAK (cms)= 0.528 RUNGFF VOLME (cmm)= 128.770 RUNGFF VOLME (cms)= 0.528 (1) PEAK FLOM DOES NOT INCLUDE BASEFLOW IF ANY.

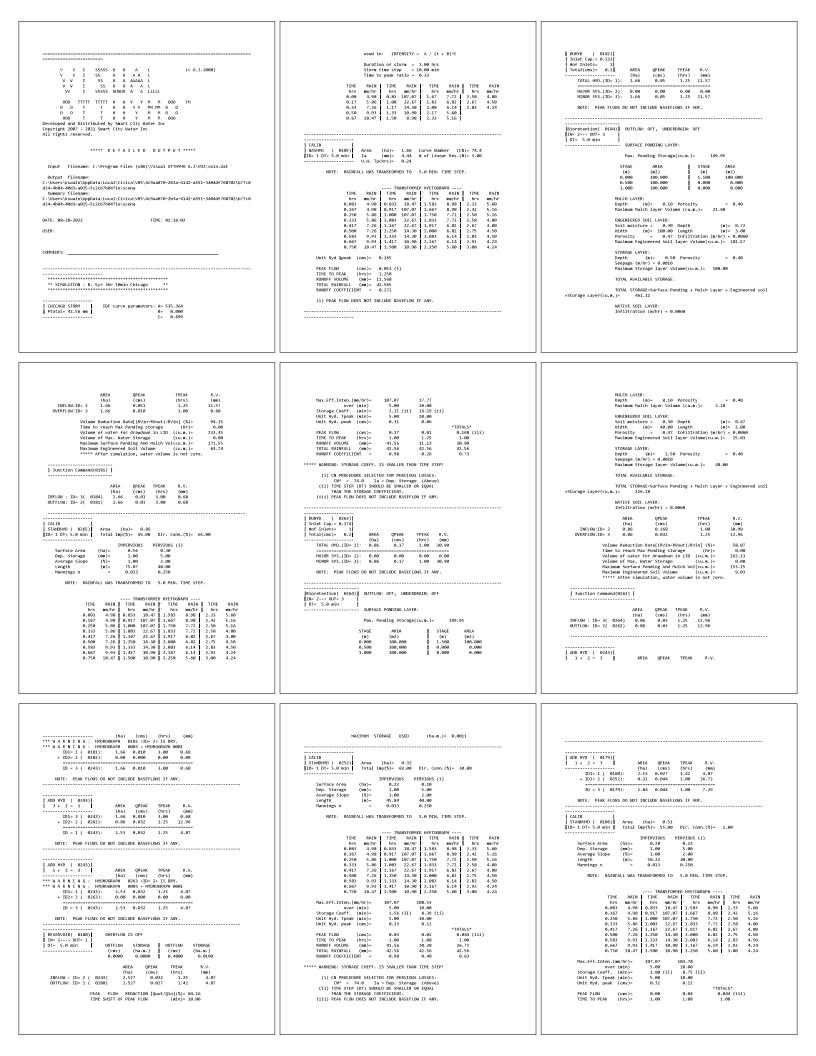

	Bab56956-7981-44cd-9ed6-5a18ca9f22ac\6c20e7fa Comments: 1. 100yr 24hr 15min SCS Type II TIME RAIN 0.050 1.46 6.55 2.39 12.50 7.17 19.50 2.39 1.50 1.46 7.75 2.92 13.75 5.58 20.25 1.59 1.75 1.46 8.60 2.92
DATE: 08-23-2022 TIME: 11:47:07	
COMMENTS:	NASHYD (0001) Area (ha)= 4.32 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min Ia (mm)= 7.00 # of Linear Res.(N)= 3.00
*** SIMULATION : 1. 100yr 24hr 15min SCS Type ** **********************************	TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.883 0.000 6.167 2.12 12.250 162.47 18.33 2.39 0.167 0.00 6.5250 2.12 12.333 19.13 18.42 2.39 0.250 0.00 6.333 2.39 12.417 19.11 18.50 2.39 0.333 1.46 6.417 2.39 12.500 19.11 18.50 2.39 0.417 1.46 6.500 2.39 12.583 19.11 18.67 2.39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 4.667 2.12 10.750 6.11 16.833 2.39 22.92 1.59 4.750 2.12 10.833 8.23 16.917 2.39 23.00 1.59 4.833 2.12 10.917 8.23 17.060 2.39 23.17 1.59 5.000 2.12 11.080 8.23 17.083 2.39 23.17 1.59 5.000 2.12 11.083 8.23 17.167 2.39 23.25 1.59 5.083 2.12 11.167 8.23 17.250 2.39 23.42 1.59 5.167 2.12 11.250 8.23 17.333 2.39 23.42 1.59 5.167 2.12 11.333 12.74 17.417 2.39 23.56 1.59 5.500 2.12 11.583 12.74 17.583 2.39 23.67 1.59 5.543 2.12 11.167 12.74 17.667 2.39 23.67 1.59 5.563 2.12 11.633 12.74 17.633 2.39 23.67 1.59 5.563 2.12 11.633 12.74 17.633 2.39 23.67 1.59 5.563 2.12 11.633 12.74 17.633 2.39 23.63 1.59 5.667 2.12 11.633 39.91 17.917 2.39 23.67 1.59 5.667 2.12 11.633 39.29 13.000 2.39 23.63 1.59 5.667 2.12 11.637 12.74 17.56 2.39 23.75 1.59 5.683 2.12 11.676 12.74 17.833 2.39 23.42 1.59 5.667 2.12 11.637 12.74 17.832 2.39 23.92 1.59 5.667 2.12 11.637 13.92 18.000 2.39 24.08 1.59 5.600 2.12 12.2009 39.29 18.083 2.39 24.17 1.59 6.000 2.12 12.2009 39.29 18.080 2.39 24.17 1.59 6.000 2.12 12.2009 39.29 18.080 2.39 24.25 1.59 6.000 2.12 12.2003 162.46 18.167 2.39 24.25 1.59 6.083 2.12 12.12.100 39.29 18.083 2.39 24.17 1.59 6.083 2.12 12.12.100 39.29 18.083 2.39 24.15 1.59 5.91 = 0.458 PEAK FLOW (cms)= 0.551 (i) TIME TO PEAK (hrs)= 12.500 RUMOFF VOLUME (mm)= 132.740 RUMOFF COEFFICIENT = 0.554 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>4.917 2.12 11.000 8.23 17.083 2.39 23.17 1.59 5.000 2.12 11.083 8.23 17.167 2.39 23.25 1.59 5.083 2.12 11.167 8.23 17.250 2.39 23.33 1.59 5.167 2.12 11.250 8.23 17.333 2.39 23.43 1.59 5.250 2.12 11.333 12.74 17.417 2.39 23.50 1.59 5.333 2.12 11.417 12.74 17.500 2.39 23.58 1.59 5.417 2.12 11.500 12.74 17.583 2.39 23.67 1.59 5.583 2.12 11.667 12.74 17.667 2.39 23.75 1.59 5.667 2.12 11.583 12.74 17.683 2.39 23.75 1.59 5.667 2.12 11.750 12.74 17.783 2.39 23.62 1.59 5.667 2.12 11.79 12.74 17.783 2.39 23.62 1.59 5.667 2.12 11.97 39.29 18.000 2.39 24.00 1.59 5.833 2.12 11.917 39.29 18.003 2.39 24.00 1.59 5.833 2.12 11.917 39.29 18.003 2.39 24.08 1.59 5.917 2.12 12.067 162.47 18.250 2.39 24.17 1.59 6.083 2.12 12.167 162.47 18.250 2.39 24.25 1.59 6.083 2.12 12.167 162.47 18.250 2.39 124.25 1.59 6.083 2.12 12.167 162.47 18.250 2.39 124.25 1.59 6.083 2.12 12.760 RUNGF COLMER (mm)= 73.542 TOTAL RAINFALL (mm)= 132.740 RUNOFF COLME (mm)= 73.542 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CALIB CALIB NASHYD (0003) Area (ha)= 3.05 Curve Number (CN)= 74.0 ID= 1 DT= 5.0 min I a (mm)= 7.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= 0.22
3.417 1.73 9.500 4.25 15.583 3.98 21.67 1.59 3.500 1.73 9.583 4.25 15.667 3.98 21.75 1.59 3.583 1.73 9.667 4.25 15.750 3.98 21.83 1.59 3.667 1.73 9.580 4.25 15.750 3.98 21.83 1.59 3.667 1.73 9.750 4.25 15.750 3.98 21.82 1.59 3.750 1.73 9.833 4.78 15.917 3.98 22.00 1.59	NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ins mm/hr hrs mm/hr 0.083 0.09 6.167 2.12 12.250 162.47 18.33 2.39 0.167 0.00 6.250 2.12 12.333 19.13 18.42 2.39 0.250 0.004 6.333 2.39 12.470 19.11 18.50 2.39 0.333 1.46 6.417 2.39 12.583 19.11 18.67 2.39 0.433 1.46 6.549 2.39 12.583 19.11 18.67 2.39 0.417 1.46 6.569 2.39 12.670 19.11 18.67 2.39 0.509 1.46 6.667 2.39 12.670 19.11 18.83 2.39 0.583 1.46 6.667 2.39 12.675 19.11 18.83 2.39 0.580
4.756 2.112 10.835 8.23 16.917 2.39 23.00 1.59 4.833 2.12 10.917 8.23 17.000 2.39 23.08 1.59	0.833 1.46 (5.97 2.39 13.000 9.82 19.08 2.39 0.917 1.46 7.000 2.39 13.083 9.82 19.17 2.39
1.000 1.46 7.083 2.39 13.167 9.82 19.25 2.39 1.083 1.46 7.167 2.39 13.250 9.82 19.33 2.39 1.167 1.46 7.250 2.39 13.333 7.17 19.42 2.39 1.250 1.46 7.250 2.92 13.437 7.17 19.58 2.39 1.331 1.46 7.417 2.92 13.500 7.17 19.58 2.39 1.417 1.46 7.560 2.92 13.563 7.17 19.57 2.39 1.500 1.46 7.567 2.92 13.583 7.17 19.58 2.39 1.558 1.46 7.667 2.92 13.583 7.17 19.58 2.39 1.560 1.46 7.570 2.92 13.750 7.17 19.58 2.39 1.563 1.46 7.677 2.92 13.833 5.58 19.92 2.39 1.750 1.46 7.750 2.92 13.917 5.58 20.60 2.39	5.167 2.12 11.250 8.23 17.333 2.39 23.42 1.59 5.250 2.12 11.333 12.74 17.417 2.39 23.50 1.59 5.333 2.12 11.417 12.74 17.500 2.39 23.58 1.59 5.417 2.12 11.583 12.74 17.503 2.39 23.67 1.59 5.504 2.12 11.583 12.74 17.750 2.39 23.67 1.59 5.583 2.12 11.583 12.74 17.750 2.39 23.83 1.59 5.667 2.12 11.583 12.74 17.750 2.39 23.83 1.59 5.667 2.12 11.750 12.74 17.750 2.39 23.83 1.59 5.667 2.12 11.750 12.74 17.917 2.39 24.00 1.59 5.833 2.12 11.2174 39.29 17.917 2.39 24.00 1.59 5.917 2.12 11.2003 30.29 18.083 2.39 24.17 1.59
	Unit Hyd Qpeak (cms)= 0.530 PEAK FLOW (cms)= 0.554 (i) TIME TO PEAK (hrs)= 12.333 RUNOFF VOLUME (mm)= 73.447 TOTAL RAINFALL (mm)= 132.740 RUNOFF COEFFICIENT = 0.553
2.750 1.73 8.833 3.72 14.917 3.98 21.00 1.59 2.833 1.73 8.917 3.72 15.000 3.98 21.08 1.59 2.917 1.73 9.000 3.72 15.083 3.98 21.17 1.59 3.000 1.73 9.083 3.72 15.167 3.98 21.17 1.59 3.000 1.73 9.167 3.72 15.203 3.98 21.17 1.59 3.000 1.73 9.167 3.72 15.203 3.98 21.15 1.59 3.083 1.73 9.167 3.72 15.203 3.98 21.42 1.59 3.167 1.73 9.250 3.72 15.333 3.98 21.42 1.59 3.250 1.73 9.333 4.25 15.417 3.98 21.50 1.59	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
	U.H. Tp(hrs)= 0.17 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	THME FORMED HYPETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$


$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.417 2.12 11.500 12.74 17.583 2.39 23.67 1.59 5.500 2.12 11.583 12.74 17.667 2.39 23.75 1.59 5.583 2.12 11.667 12.74 17.750 2.39 23.83 1.59 5.667 2.12 11.750 12.74 17.833 2.39 23.92 1.59 5.750 2.12 11.750 12.74 17.833 2.39 23.92 1.59 5.833 2.12 11.017 39.29 18.000 2.39 24.00 1.59 5.917 2.12 12.000 39.29 18.083 2.39 24.17 1.59 6.000 2.12 12.083 162.46 18.167 2.39 24.25 1.59 6.083 2.12 12.167 162.47 18.250 2.39 Unit Hyd Qpeak (cms)= 0.674 PEAK FLOW (cms)= 0.621 (1) TIME TO PEAK (hrs) = 12.250 RUMOFF VOLUME (mm)= 73.281 TOTAL RAINFALL (mm)= 73.281 TOTAL RAINFALL (mm)= 0.552 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} CALLB \\ NASHYD (0005) \\ ID= 1 DT= 5.0 min \\ ID= 1 DT= 5.0 min \\ U.H. Tp(hrs) = 0.40 \\ \end{bmatrix} Area (ha) = 2.29 Curve Number (CN) = 74.0 \\ ID= 1 DT= 5.0 min \\ U.H. Tp(hrs) = 0.40 \\ \end{bmatrix} NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. \\ \hline TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN \\ hrs mm/hr h rs mm/hr hrs mm/hr hrs mm/hr h RAIN TAME RAIN TAME RAIN TAME RAIN 0.083 0.000 6.167 2.12 12.250 162.47 18.33 2.39 \\ 0.167 0.00 6.6250 2.12 12.333 19.13 18.42 2.39 \\ 0.250 0.00 6.333 2.39 12.417 19.11 18.58 2.39 \\ 0.417 1.46 6.590 2.39 12.583 19.11 18.67 2.39 \\ 0.590 1.46 6.6583 2.39 12.67 19.11 18.67 2.39 \\ 0.590 1.46 6.6583 2.39 12.750 19.11 18.67 2.39 \\ 0.590 1.46 6.6833 2.39 12.750 19.11 18.83 2.39 \\ 0.667 1.46 6.6833 2.39 12.750 19.11 18.87 2.39 \\ 0.591 1.46 6.6833 2.39 12.750 19.11 18.87 2.39 \\ 0.591 1.46 6.6833 2.39 13.060 9.82 19.08 2.39 \\ 0.517 1.46 6.790 2.39 13.080 9.82 19.08 2.39 \\ 0.633 1.46 6.717 2.39 13.080 9.82 19.08 2.39 \\ 0.917 1.46 7.090 2.39 13.083 9.82 19.08 2.39 \\ 1.083 1.46 7.083 2.39 13.167 9.82 19.25 2.39 \\ 1.083 1.46 7.083 2.39 13.167 9.82 19.23 2.39 \\ 1.083 1.46 7.7167 2.39 13.050 9.82 19.33 2.39 \\ 1.250 1.46 7.333 2.92 13.417 7.17 19.50 2.39 \\ 1.250 1.46 7.333 2.92 13.417 7.17 19.50 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39 \\ 1.417 1.46 7.500 2.92 13.583 7.17 19.67 2.39$
1.500 1.46 7.583 2.92 13.667 7.17 19.75 2.39 1.583 1.46 7.667 2.92 13.750 7.17 19.83 2.39 1.667 1.46 7.750 2.92 13.833 5.58 19.92 2.39 1.750 1.46 7.833 2.92 13.917 5.58 20.08 2.39 1.833 1.46 7.917 2.92 14.080 5.58 20.08 2.39 1.631 1.46 8.080 2.92 14.080 5.58 20.17 2.39 2.080 1.46 8.080 2.92 14.167 5.58 20.33 1.59 2.167 1.46 8.250 2.92 14.250 5.58 20.33 1.59 2.167 1.46 8.250 2.92 14.250 3.98 20.58 1.59 2.417 1.73 8.500 3.45 14.667 3.98 20.58 1.59 2.417 1.73 8.583 3.45 14.467 3.98 20.58 1.59 2.560 1.73 8.583 3.45 14.4797 3.98 20.57 1.59 2.563 1.73 8.667 3.45 14.637 3.98 21.59 1.59 2.667 1.73 8.833 3.72 14.917 3.98 21.17 1.59 3.600 1.73 9.683 3.72 15.93 3.98 21.17 1.59 2.667 $1.$	5.667 2.12 11.750 12.74 17.833 2.39 23.92 1.59 5.780 2.12 11.833 39.29 17.917 2.39 24.00 1.59 5.833 2.12 11.917 39.29 18.000 2.39 24.00 1.59 5.917 2.12 12.000 39.29 18.003 2.39 24.17 1.59 6.000 2.12 12.183 162.46 18.167 2.39 24.25 1.59 0.101 Hyd Opeak (cms)= 0.219 24.25 1.59 1.59 2.39 24.25 1.59 0.608 2.12 12.167 162.47 18.250 2.39 24.25 1.59 0.011 Hyd Opeak (cms)= 0.271 (1) TIME TO PEAK (hrs)= 12.500 RUNOFF VOLUME (mm)= 13.254 0.000 RUNOFF VOLUME (mm)= 32.54 0.554 0.554 0.554 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

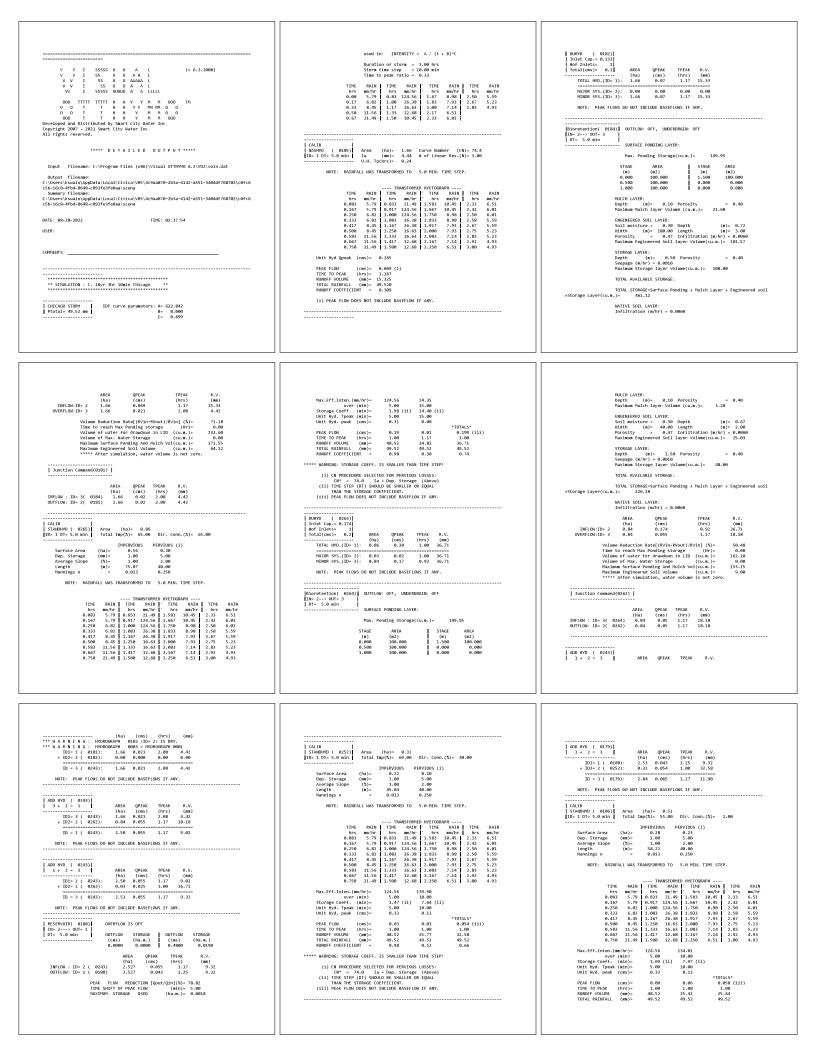






Time to reach Max Ponding storage (Hr)= 0.00 Volume of Max. Water for drawdom in LD (cu.m.)= 106.32 Volume of Max. Water Storage (cu.m.)= 0.00 Maximum Engineered Soil Volume (cu.m.)= 88.68 Maximum Engineered Soil Volume (cu.m.)= 69.86 ****** After simulation, water volume is not zero. ****** 69.86 Junction Command(0330)	
AREA QPEAK TPEAK R.V. (Inia) (2015) (Inia) (Inia) (Inia) (InifLOM : ID= 3(0329) 0.00 0.00 0.00 0.00	ADD HYD 1 + 2 ID:
(ha) (cms) (hrs) (mm) INFLOM : ID= 3(0329) 0.00 0.00 0.00 0.00	+ ID: ID
	NOTE: ADD HYD 3 + 2
Junction Command(0332)	10: + 10:
AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (m) INFLOW : ID=1 (0229) 0.59 0.48 11.13 UPTION: ID=2 (032) 0.59 0.41 0.48 11.13	ID NOTE:
	ADD HYD 1 + 2
SOD IND (c 6330) 1 + 2 = 3 AREA OPEAK TPEAK R.V.	ID: + ID: ID NOTE:
DD IHDD (0310)] AREA (QPEAK TPEAK R.V. VA A R I I R G : HUNDOGAUM 0 0310 (DRS) (MrS) (WRM) W J A R I I R G : HUNDOGAUM 0 0310 (DRS) (S) (S) (S) (S) (S) (S) (S) (S) (S) (RESERVOIN IN= 2 DT= 5.0
ID = 1 (0310): 0.59 0.009 0.00 11.13 ID = 1 (0310): 0.59 0.009 0.00 11.13 NOTE: PEAK FLOKS DO NOT INCLUDE BASEFLOKS IF AWV.	INFLOW

ADD HVD (0061) 1 + 2 = 3	AREA	QPEAK	TREAK	R.V		
	(ha)	(cms)	(hrs)	(nn)		
ID1= 1 (0276):	1.28	0.198	1.00	23.68		
+ ID2= 2 (0304);						
ID = 3 (0061):		0.870	1.00		-	
NOTE: PEAK FLOWS D	O NOT INCL	UDE BASEFI	OWS IF A	NY.		
ADD HYD (0061) 3 + 2 = 1	0050	ODEAK	TOFAK	R.V		
3 + 2 = 1 ID1= 3 (0061):	(ha)	(cms)	(hrs)	(00)		
TD1= 3 (0061):	6.76	0.870	1.00	19.60	,	
+ ID2= 2 (0306):	14.21	1.967	1.00	22.17		
ID = 1 (0061):					-	
NOTE: PEAK FLOWS D	O NOT INCL					
NOTE: PEAK FLOWS D	O NOT INCL					
NOTE: PEAK FLOWS D ADD HYD (0061) 1 + 2 = 3	O NOT INCL AREA (ba)	QPEAK (cms)	TPEAK (hrs)	R.V (mn)	
NOTE: PEAK FLOWS D ADD HYD (0061) 1 + 2 = 3	O NOT INCL AREA (ba)	QPEAK (cms)	TPEAK (hrs)	R.V (mn)	
NOTE: PEAK FLOWS D ADD HYD (0061) 1 + 2 = 3 ID1= 1 (0061); + ID2= 2 (0310):	0 NOT INCL AREA (ha) 20.97 0.59	QPEAK (cms) 2.836 0.009	TPEAK (hrs) 1.00 0.08	R.V (mn 21.35 11.13)	
NOTE: PEAK FLOWS D ADD HYD (0061) 1 + 2 = 3	0 NOT INCL AREA (ha) 20.97 0.59	QPEAK (cms) 2.836 0.009	TPEAK (hrs) 1.00 0.08	R.V (mn 21.35 11.13)	
NOTE: PEAK FLOWS D ADD HYD (0061) 1 + 2 = 3 I ID1= 1 (0061) + ID2= 2 (0310):	AREA (ha) 20.97 0.59 21.56	QPEAK (cms) 2.836 0.009 2.842	TPEAK (hrs) 1.00 0.08 1.00	R.V (mm 21.35 11.13 21.07)	
NOTE: PEAK FLOWS D ADD HYD (0061) 1 + 2 = 3 ID1= 1 (0061) + ID2= 2 (0310): ID = 3 (0061);	AREA (ha) 20.97 0.59 21.56	QPEAK (cms) 2.836 0.009 2.842	TPEAK (hrs) 1.00 0.08 1.00	R.V (mm 21.35 11.13 21.07)	
NOTE: PEAK FLOWS D ADD HYD (00061) 1 = 2 = 3 3 1 ID2 = 1 (0061) 1 ID2 = 2 (0310): 1 ID2 = 2 (0310): 1 ID2 = 3 (0061) 1 NOTE: PEAK FLOWS D 1 RESERVOIR (0067) 1	AREA (ha) 20.97 0.59 21.56 O NOT INCL OVERFLOW	QPEAK (cms) 2.836 0.009 2.842 UDE BASEFI IS OFF	TPEAK (hrs) 1.00 0.08 1.00	R.V (mn 21.35 11.13 21.07 NY.) =	
NOTE: PEAK FLOWS D ADD HYD (00061) 1 = 2 = 3 3 1 ID2 = 1 (0061) 1 ID2 = 2 (0310): 1 ID2 = 2 (0310): 1 ID2 = 3 (0061) 1 NOTE: PEAK FLOWS D 1 RESERVOIR (0067) 1	AREA (ha) 20.97 0.59 21.56 O NOT INCL OVERFLOW	QPEAK (cms) 2.836 0.009 2.842 UDE BASEFI IS OFF	TPEAK (hrs) 1.00 0.08 1.00	R.V (mn 21.35 11.13 21.07 NY.) =	
NOTE: PEAK FLOWS D ADD HYD (00061) 1 = 2 = 3 3 1 ID2 = 1 (0061) 1 ID2 = 2 (0310): 1 ID2 = 2 (0310): 1 ID2 = 3 (0061) 1 NOTE: PEAK FLOWS D 1 RESERVOIR (0067) 1	AREA (ha) 20.97 0.59 21.56 O NOT INCL OVERFLOW	QPEAK (cms) 2.836 0.009 2.842 UDE BASEFI IS OFF	TPEAK (hrs) 1.00 0.08 1.00	R.V (mn 21.35 11.13 21.07 NY.) =	
NOTE: PEAK FLOWS D ADD HYD (00061) 1 = 2 = 3 3 1 ID2 = 1 (0061) 1 ID2 = 2 (0310): 1 ID2 = 2 (0310): 1 ID2 = 3 (0061) 1 NOTE: PEAK FLOWS D 1 RESERVOIR (0067) 1	O NOT INCL AREA (ha) 20.97 0.59 21.56 O NOT INCL OVERFLOW (Cms) 0.0000	QPEAK (cms) 2.836 0.009 2.842 UDE BASEFI UDE BASEFI IS OFF STORAGE (ha.m.) 0.0000	TPEAK (hrs) 1.00 0.08 1.00 .0WS IF A 0.0WS IF A	R.V (mn 21.35 11.13 21.07 NY. FLOW ms) 6610) = STORAGE (ha.m.) 0.9850	
NOTE: PEAK FLOWS D ADD HYD (00061) 1 = 2 = 3 3 1 ID2 = 1 (0061) 1 ID2 = 2 (0310): 1 ID2 = 2 (0310): 1 ID2 = 3 (0061) 1 NOTE: PEAK FLOWS D 1 RESERVOIR (0067) 1	0 NOT INCL AREA (ha) 20.97 0.59 21.56 0 NOT INCL OVERFLOW (CTRS) 0.04000 0.04000	QPEAK (cms) 2.836 0.009 2.842 UDE BASEFI IS OFF STORAGE (ha.m.) 0.0000 0.1140	TPEAK (hrs) 1.00 0.08 1.00 CONS IF A .00T (ci 0.1	R.V (mn 21.35 11.13 21.07 NY. FLOW ms) 6610 0960) = STORAGE (ha.m.) 0.9950 1.3320	
NOTE: PEAK FLOWS D ADD HYD (00061) 1 = 2 = 3 3 1 ID2 = 1 (0061) 1 ID2 = 2 (0310): 1 ID2 = 2 (0310): 1 ID2 = 3 (0061) 1 NOTE: PEAK FLOWS D 1 RESERVOIR (0067) 1	0 NOT INCL AREA (ha) 20.97 0.59 21.56 0 NOT INCL 0VERFLOW 0UTFLOW (cms) 0.0000 0.04000 0.07400	QPEAK (cms) 2.836 0.009 2.842 UDE BASEFI IS OFF STORAGE (ha.m.) 0.0000 0.1140 0.3630	TPEAK (hrs) 1.00 0.08 1.00 .005 IF A .005 IF A .005 IF A .001 (c) 0.1 .1. 1.	R.V (mm 21.35 11.13 21.07 NY. FLOW ms) 6610 0960 4260) = STORAGE (ha.m.) 0.9850 1.3320 1.5360	
NOTE: PEAK FLOWS D ADD HYD (00061) 1 = 2 = 3 3 1 ID2 = 1 (0061) 1 ID2 = 2 (0310): 1 ID2 = 2 (0310): 1 ID2 = 3 (0061) 1 NOTE: PEAK FLOWS D 1 RESERVOIR (0067) 1	0 NOT INCL AREA (ha) 20.97 21.56 0 NOT INCL 0UFFLOM (cms) 0.0000 0.0400 0.0700 0.0710	QPEAK (cms) 2.836 0.009 2.842 UDE BASEFI IS OFF STORAGE (ha.m.) 0.0000 0.1140 0.3690 0.6450	TPEAK (hrs) 1.00 0.08 1.00 .0NS IF A 0UT (CC 0. 1 1. 1. 0.	R.V (mn 21.35 11.13 21.07 NY. FLON ms) 6610 0960 4260 0000) = STORAGE (na.n.) 0.9850 1.3520 1.35860 0.0000	
NOTE: PEAK FLOWS D ADD HYD (00061) 1 = 2 = 3 3 1 ID2 = 1 (0061) 1 ID2 = 2 (0310): 1 ID2 = 2 (0310): 1 ID2 = 3 (0061) 1 NOTE: PEAK FLOWS D 1 RESERVOIR (0067) 1	0 NOT INCL AREA (ha) 20.97 21.56 0 NOT INCL 0UFFLOM (cms) 0.0000 0.0400 0.0700 0.0710	QPEAK (cms) 2.836 0.009 2.842 UDE BASEFI IS OFF STORAGE (ha.m.) 0.0000 0.1140 0.3630	TPEAK (hrs) 1.00 0.08 1.00 .0NS IF A 0UT (CC 0. 1 1. 1. 0.	R.V (mn 21.35 11.13 21.07 NY. FLON ms) 6610 0960 4260 0000) = STORAGE (na.n.) 0.9850 1.3520 1.35860 0.0000	





NOTE: PEAK FL		INCLUDE BASEFLOW			
Bioretention(032 IN= 2> OUT= 3 DT= 5.0 min					
	SURFAC	E PONDING LAYER:			
		onding Storage(c			
	STAGE (m)	AREA (#2)	STAGE (#) 1,500	AREA (m2)	
	0.000 0.500 1.000	100.000 100.000 100.000	(H) 1.500 0.000 0.000	100.000 0.000 0.000	
	MULCH LAYE				
	ENGTNEEDER	COTI LAVER-		.00	
	Soil moist Width	ure = 0.30 D (m)= 3.00 L = 0.47 I ngineered Soil la	epth ength nfiltration (m/ ver Volume(cu.m	(m)= 0.72 (m)=240.00 hr) = 0.0060)= 242.09	
	DEPTH	DISCHARGE		DISCHARGE	
	(m) 0.000	(cms) 0.000	(m) 0.559	(cms) 0.030	
	0.279 0.406	0.010 0.020	0.762	0.040 0.050	
	STORAGE LA Depth Seepage (m	(n)= 1.00	Porosity	= 0.40	
		corage layer Volu	me(cu.m.)= 28	8.00	
	TOTAL STOP	AGE=Surface Pond	ing + Mulch Lav	er + Engineered	soil
+Storage Layer(cu.m	NATIVE SOI	10.04			
	AREA	QPEAK	TPEAK	R.V.	
INFLOW:ID= 2	(ha) 0.59	(cms) 0.074	(hrs) 1.00	(mm) 25.47	
INFLOM : ID= 2 (OUTFLOM: ID= 1 (AREA QPEAK (ha) (cms) 21.558 0.1 I REDUCTION [QO OF PEAK FLOW ORAGE USED	95 1.00 86 3.00	R.V. (mm) 29.45 29.42 65 69 80 8171	

QUIF(10): [1: 1: 0: 3) 0.03 0.000 0.00 1.0.6 QUIF(10): [1: 1: 0: 3) 0.03 0.000 0.00 1.0.6 QUIF(10): [1: 1: 0: 3) 0.00 0.000 0.00 0.00 Values reduction state((Xin, Nvout)/NVin(1)(S): 1: 5: 10 15: 10 15: 10 Values of water for dradonin in [1: 0 (Gu.s.): 15: 10 15: 10 Values of water for dradonin in [1: 0 (Gu.s.): 15: 10 15: 10 Values of water for dradonin in [1: 0 (Gu.s.): 15: 10 15: 10 Watum surface of onling Adm Public Volues (Gu.s.): 15: 10 Values reduction state((Xin, Nvout)/Nvin(1)(Gu.s.): 15: 10 15: 10 Values reduction state((Xin, Nvout)/Nvin(1)(Gu.s.): 15: 10 15: 10 Values reduction state((Xin, Nvout)/Nvin(1)(Gu.s.): 16: 10 16: 10 Values reduction state((Xin, Nvout)/Nvin(1)(Gu.s.): 16: 10 16: 10 Values reduction (Guanard(Gu32)) 10: 00: 00: 00: 00: 00: 00: 00: 00: 00:								
OVERFLOW:ID-3 0.00 0.00 0.00 0.00 VOLMER Roduction Relation Mark Ponding Storage (W)- 56.60 Volme of valater for draudom in Ling (Ucus.)= 0.00 0.00 Volme of Valater for draudom in Ling (Ucus.)= 0.00 0.00 Maximum Surface Ponding And Publich Ucus.]= 0.00 0.00 Junction Command(0330) 0.00 0.00 0.00 Junction Command(0332) 1 0.00 0.00 Junction Command(0								
Volue Reduction Rate(RV:n-Nout)/RV:n] (%)- Solution Start Contact Max Ponding storage (Nr)- Solution Start Contact Max Ponding storage (Nr)- Solution Start Storage (Nr)- Solution Start Storage (Nr)- Maximum Styneser Storage (Nr)- Maximum Engineered Soli Volue (Cut.m.)- Solution Command(3330)]	OUTFLOW: II)= 1)- 3	0.59	0.009			11.05	
Time to reach Max Pending storage (iii)> 0.00 Volume of Wax: Mater Storage (iii)> 0.00 Volume of Wax: Mater Storage (iii)> 0.00 Wax: Mater Storage (iii)> 0.00 Max: Mater Storage (iii)> 0.00 Max: Mater Storage (iii)> 0.00 Max: Mater Storage (iii)> 0.00 Max: Mater Storage (iii)> 0.00 Max: Mater Storage (iii)> 0.00 Max: Mater Storage (iii)> 0.00 Max: Mater Storage (iii)> 0.00 Max: Mater Storage (iii)> 0.00 Max: Mater Storage 0.00 0.00 (iii) (iii)> 0.00 0.00 (iii) 0.03 0.00 0.00 (iii) 0.03 0.00 0.00 (iii) 0.00 0.00 0.00 (iii) 0.03 0.03 0.00 (iii) 0.03 0.03 0.00 (iii) 0.03 0.03 0.00 Max 1.03 0.03 </td <td>OVERFLOW.IL</td> <td>J- 5</td> <td>0.00</td> <td>0.000</td> <td></td> <td>0.00</td> <td>0.00</td> <td></td>	OVERFLOW.IL	J- 5	0.00	0.000		0.00	0.00	
Volume of Max Matter for dramadown in LD (con) = 155.20 Volume of Max Matter Storage (con) = 0.00 Maximum Surface Ponding And Much Vol(cun) = 136.90 Maximum Surface Ponding And Much Vol(cun) = 136.90 Maximum Surface Ponding And Much Vol(cun) = 0.00 Maximum Surface Ponding And Ponding And Much Vol(cun) = 0.00 Maximum Surface Ponding And Pondig And Ponding And Ponding And Pond								
Volume of Max, Kater Storage (cus.)= 0.00 Maximum Engineered Sall Volume (cus.)= 68.86 ****** Atter simulation, water volume is not zero. ******* Atter simulation, water volume is not zero. ************************************						(Hr)=		
Maximum Supreservation 36.86 Maximum Engineered Soil Volume (cur.n.) 6.86 ***** After simulation, water volues is not zero. 6.86 [] Junction command(8330)]		Volume	of Max. Water	storage	10 110	(cu.m.)=		
***** A KE I I I I I G : IYYORGAAH 031 CD 23 I S ALSO DW A KE A CPEAK TPEAK R.V. (h) S C C C C C C C C C C C C C C C C C C		Maximum	Surface Pond	ling And M	Aulch Vol	(cu.m.)=	136.90	
Image: Intermed (0000) AREA QPEAK TPEAK R.V. INFLOM:: ID-2 (0000) 6.00 6.00 6.00 6.00 INFLOM:: ID-2 (0000) 6.00 6.00 6.00 6.00 Intermediation: Command(00000) 1000 6.00 6.00 6.00 Intermediation: Command(000000) 1000 6.00 6.00 6.00 Intermediation: Command(000000) 1000 6.00 6.00 6.00 Intermediation: Command(000000) 10000 6.00 6.00 6.00 Intermediation: Command(0000000) 100000000000 6.00 6.00 6.00 Intermediation: Command(000000000000000000000000000000000000		Maxinum	Engineered S	oil Volu	ne	(cu.m.)=	69.86	
Junction Command(0332) 		д	rter simulati	on, water	• vorume	is not zero	•	
INFLOM : ID - 3((PS2) (Cas) (Pris) (em) INFLOM : ID - 2(0320) 0.00 0.00 0.00 0.00 OUTION: ID - 2(0320) 0.00 0.00 0.00 0.00 Imittion Command(03322) Imittion Command(03322) Imittion Command(03322) Imittion Command(03322) Imittion Command(03322) INFLOM : ID - 1(03220) 0.30 0.01 0.00 Imittion Command(03322) INFLOM : ID - 1(03220) 0.32 0.42 0.00 1.05 UPTLOM : ID - 2(0332) 0.22 0.02 0.00 1.05 INFLOM : ID - 2(0332) 0.22 0.02 0.00 1.05 IMPLOM : ID - 2(0332) 0.25 0.02 0.00 1.05 IMPLOM : ID - 2(0332) 0.25 0.02 0.00 1.05 IMPLOM : ID - 2(0332) 0.25 0.07 0.00 0.00 IMPLOM : ID - 2(0330) 0.05 0.07 0.00 0.00	Junction Co	onnand (0	330)					
INFLOM : ID - 3((PS2) (Cas) (Pris) (em) INFLOM : ID - 2(0320) 0.00 0.00 0.00 0.00 OUTION: ID - 2(0320) 0.00 0.00 0.00 0.00 Imittion Command(03322) Imittion Command(03322) Imittion Command(03322) Imittion Command(03322) Imittion Command(03322) INFLOM : ID - 1(03220) 0.30 0.01 0.00 Imittion Command(03322) INFLOM : ID - 1(03220) 0.32 0.42 0.00 1.05 UPTLOM : ID - 2(0332) 0.22 0.02 0.00 1.05 INFLOM : ID - 2(0332) 0.22 0.02 0.00 1.05 IMPLOM : ID - 2(0332) 0.25 0.02 0.00 1.05 IMPLOM : ID - 2(0332) 0.25 0.02 0.00 1.05 IMPLOM : ID - 2(0332) 0.25 0.07 0.00 0.00 IMPLOM : ID - 2(0330) 0.05 0.07 0.00 0.00			AREA	OPFAK	TPFAK	R.V.		
INFLOW : ID = 3 (0.229) 0.00 0.00 0.00 0.00 0.00 UPFLOW : ID = 2 (0.329) 0.00 0.00 0.00 0.00 0.00 Improvement (0.322) Improvement (0.322			(ha)	(cns)	(hrs)	(mm)		
ABEA QPEAK TPEAK R.V. (ba) (cms) (brs) 1ms) THELOW: ID = 1(-0329) 0.53 0.61 1ms) OUTFLOW: ID = 2(-0322) 0.53 0.61 0.68 11.65 OUTFLOW: ID = 2(-0322) 0.53 0.61 0.68 11.65 III + 2 = 3 AREA QPEAK TPEAK R.V. III: + 2 = 3 (ma) (cms) (hrs) (mu) *** WA R R II N G: HYDROGAPH 0.91 CD = 2): ID FW HAN R II N G: HYDROGAPH 0.91 CD = 2): ID FW I: AD HOD (-0320) ABEA QPEAK TPEAK R.V. I: AD HOD (-0320) ID = 2): ID FW ID FW ID FW I: AD HOD (-0320) ID FW ID FW ID FW ID FW I: AD HOD (-0200) ID FW ID FW ID FW ID FW ID FW I: AD HOW	INFLOW : ID=	3(032	9) 0.00	0.00	0.00	0.00		
Junction Command(0322) AREA QPEAN TPEAN R.V. (b) (cms) (cms) (cms) INFLOW: ID-1(0229) 0.59 0.01 0.08 11.05 UTFLOW: ID-2(0322) 0.59 0.01 0.08 11.05 	OUTFLOW: ID=	2(033	0) 0.00	0.00	0.00	0.00		
Junction Command(0322) AREA QPEAN TPEAN R.V. (b) (cms) (cms) (cms) INFLOW: ID-1(0229) 0.59 0.01 0.08 11.05 UTFLOW: ID-2(0322) 0.59 0.01 0.08 11.05 								
(ha) (ens) (hm) INFLOW : ID = 1(0:239) 0.59 0.60 0.68 11.05 OUTFLOW: ID = 2(0:332) 0.59 0.61 0.68 11.05 INFLOW : ID = 2(0:332) 0.59 0.61 0.68 11.05 IAD IMD (0:310) IASEA QPEAX TPEAX R.V. I + 2 = 3 (Ma) (Gas) (Pris) (mm) I + 2 = 3 (Ma) (Gas) (Pris) (mm) I + 2 = 3 (Ma) (Gas) (Pris) (mm) I + 4 = 1 IM G : IMOROGALM 8380 - ID = 15 IS DEV INFLOW INFLOW I + 4 = 1 IM G : IMOROGALM 8310 - ID = 3 IS ALSO DEV INFLOW INFLOW I + 4 = 1 IM G : IMOROGALM 8310 - ID = 3 IS ALSO DEV INFLOW INFLOW I + 4 = 1 IM G : IMOROGALM 9310 - (ID = 3) IS DEV, INFLOW INFLOW INFLOW I + 4 = 1 IM G : IMOROGALM 9310 - (ID = 3) IS DEV, INFLOW INFLOW INFLOW I + 4 = 1 IM G : IMOROGALM = 0310 - ID = 10 INTECOROME 0322 INFLOW INFLOW INFL	Junction Co	0) briand	332)					
(ha) (ens) (hm) INFLOW : ID = 1(0:239) 0.59 0.60 0.68 11.05 OUTFLOW: ID = 2(0:332) 0.59 0.61 0.68 11.05 INFLOW : ID = 2(0:332) 0.59 0.61 0.68 11.05 IAD IMD (0:310) IASEA QPEAX TPEAX R.V. I + 2 = 3 (Ma) (Gas) (Pris) (mm) I + 2 = 3 (Ma) (Gas) (Pris) (mm) I + 2 = 3 (Ma) (Gas) (Pris) (mm) I + 4 = 1 IM G : IMOROGALM 8380 - ID = 15 IS DEV INFLOW INFLOW I + 4 = 1 IM G : IMOROGALM 8310 - ID = 3 IS ALSO DEV INFLOW INFLOW I + 4 = 1 IM G : IMOROGALM 8310 - ID = 3 IS ALSO DEV INFLOW INFLOW I + 4 = 1 IM G : IMOROGALM 9310 - (ID = 3) IS DEV, INFLOW INFLOW INFLOW I + 4 = 1 IM G : IMOROGALM 9310 - (ID = 3) IS DEV, INFLOW INFLOW INFLOW I + 4 = 1 IM G : IMOROGALM = 0310 - ID = 10 INTECOROME 0322 INFLOW INFLOW INFL			AREA	OPEAK	TPEAK	R.V.		
ADD HYD (9310) ARA (026X TF6AX R.V. 1 + 2 - 3 ARA (026X TF6AX R.V. *** M A R II M G : HYDBOGAAPH 9331 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAAPH 9311 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAAPH 9311 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAAPH 9311 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAPH 9311 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAPH 9311 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAPH 9312 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAPH 9312 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAPH 9312 (Db -2) T5 DBY.			(ha)	(cms)	(hrs)	(mm)		
ADD HYD (9310) ARA (026X TF6AX R.V. 1 + 2 - 3 ARA (026X TF6AX R.V. *** M A R II M G : HYDBOGAAPH 9331 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAAPH 9311 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAAPH 9311 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAAPH 9311 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAPH 9311 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAPH 9311 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAPH 9312 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAPH 9312 (Db -2) T5 DBY. *** M A R II N G : HYDBOGAPH 9312 (Db -2) T5 DBY.	INFLOW : ID=	1(032	9) 0.59	0.01	0.08	11.05		
AOD HYD (0310) AREA (0PEAX TPEAX R.V. 1 + 2 = 3 (h3) (cts) (hr) (mm) ************************************	OUTFLOW: ID=	2(033	2) 0.59	0.01	0.08	11.05		
1 1 + 2 - 3 AREA QPEAK TPEAK R.V. (ha) (cms) (hm) (cms) (hm) *** W A R II N G : HYOBOGARH 0331 (DP 2 15 D RY. *** W A R II N G : HYOBOGARH 0331 (DP 2 15 D RY. *** W A R II N G : HYOBOGARH 0310 (DP 2 15 D RY.								
1 1 + 2 - 3 AREA QPEAK TPEAK R.V. (ha) (cms) (hm) (cms) (hm) *** W A R II N G : HYOBOGARH 0331 (DP 2 15 D RY. *** W A R II N G : HYOBOGARH 0331 (DP 2 15 D RY. *** W A R II N G : HYOBOGARH 0310 (DP 2 15 D RY.								
*** WA R II N G : MYDROGADH 0330 CD= 10 IS DRY. *** WA R II N G : MYDROGADH 0331 CD= 20 IS DRY. *** WA R II N G : MYDROGADH 0310 CD= 30 IS ALSO DRY *** WA R II N G : MYDROGADH 0310 CD= 30 IS ALSO DRY *** WA R II N G : MYDROGADH 0310 CD= 30 IS DRY. *** WA R II N G : MYDROGADH 0310 CD= 30 IS DRY. *** WA R II N G : MYDROGADH 0310 CD= 30 IS DRY.	ADD HYD (0	0310)						
*** WA R II N G : MYDROGADH 0330 CD= 10 IS DRY. *** WA R II N G : MYDROGADH 0331 CD= 20 IS DRY. *** WA R II N G : MYDROGADH 0310 CD= 30 IS ALSO DRY *** WA R II N G : MYDROGADH 0310 CD= 30 IS ALSO DRY *** WA R II N G : MYDROGADH 0310 CD= 30 IS DRY. *** WA R II N G : MYDROGADH 0310 CD= 30 IS DRY. *** WA R II N G : MYDROGADH 0310 CD= 30 IS DRY.	1 + 2 = 3	3	AREA	QPEAK	TPEAK	R.V.		
*** W A K N I N G : MYDROGARM 0331 C/D > 25 IS DRY. *** W A K N I N G : MYDROGARM 0331 C/D > 15 A LSO DRY **** W A K N I N G : MYDROGARM 0310 C/D > 15 A LSO DRY (AD DY (0310)] AREA (0240 C/D) *** W A K N I N G : MYDROGARM 0310 C/D > 35 IS DRY. *** W A K N I N G : MYDROGARM 0310 C/D > 35 IS DRY.			(ha)	(cms)	(hrs)	(mm)		
**** W A R R I I N G : HYDROGRAPH 0310 < (DD-3) IS ALSO DRV								
[AD0 HVD (0 210)] 3 + 2 - 1 (b1) (cm) (cm) · (b1) (cm) (b1) (cm) · (b1) (cm) (b1) (cm) · · · · · A R I I I G : HV0602A0H 0 210 (D1-3) · IS D8Y, (m) · · · · · A R R I I G : HV0602A0H 0 210 (D1-3) · · IS D8Y, 0 = 0.10 · · · · · · · A R R I I G : HV0602A0H 0 210 (D1-3) · · · · · · · · · · · · · · · · · · ·								
1 3 2 -1 AREA QPEAK TPEAK R.V.								
1 3 2 -1 AREA QPEAK TPEAK R.V.								
*** W A R N I N G : HYDROGRAPH 0310 <id= 3=""> IS DRY. *** W A R N I N G : HYDROGRAPH 0310 = HYDROGRAPH 0332</id=>								
*** W A R N I N G : HYDROGRAPH 0310 <id= 3=""> IS DRY. *** W A R N I N G : HYDROGRAPH 0310 = HYDROGRAPH 0332</id=>	3 + 2 = 3	1	AREA	QPEAK	TPEAK	R.V.		
*** W A R N I N G : HYDROGRAPH Ø310 = HYDROGRAPH Ø332			(ha)	(cms)	(hrs)	(mm)		
	*** WARNTE	NG:H	YDROGRAPH P	310 < ID=	BOGRAPH	0332		
+1D2-2 (0332): 0.59 0.009 0.08 11.05								
	+ ID2= 2	(0332): 0.59	0.009	0.08	11.05		

ID = 1 (0310)	· 0.50			11.05	
10 - 1 (0510)	. 0.55	01005	0.00	11.05	
NOTE: PEAK FLOWS					
ADD HYD (0061)					
1 + 2 = 3	AREA	QPEAK (cms)	TPEAK	R.V.	
	(na)	(cms)	(hrs)	(nn)	
ID1= 1 (0276) + ID2= 2 (0304)	5.48	0.920	1.00	26.69	
ID = 3 (0061)	: 6.76	1.197	1.00	27.78	
NOTE: PEAK FLOWS	DO NOT THEI	IDE BASEEL	OWS TE A	NV.	
NOTE: PEAK TEONS					
ADD HYD (0061)					
ADD HYD (0061) 3 + 2 = 1	APEA	OREAK	TREAK	RV	
	(ha)	QPEAK (cms)	(hrs)	(00)	
ID1= 3 (0061)	6.76	1.197	1.00	27.78	
+ ID2= 2 (0306)					
ID = 1 (0061)			1.00		
10 - 1 (0001)	. 20.37	3,309	1.00	29.91	
NOTE: PEAK FLOWS	DO NOT INCL	UDE BASEFL	OWS IF A	NY.	
ADD HVD (0061)					
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.	
ID1= 1 (0061) + ID2= 2 (0310)	(ha)	(cms)	(hrs)	(nn)	
ID1= 1 (0061)	: 20.97	3.989	1.00	29.97	
+ 1D2= 2 (0310)	. 0.59	0.009	0.08	11.02	
	: 21.56				
NOTE: PEAK FLOWS					
NOTE: PEAK FLOWS					
NOTE: PEAK FLOWS					
NOTE: PEAK FLOWS RESERVOIR(0067) IN= 2> OUT= 1	OVERFLOW	IS OFF			
NOTE: PEAK FLOWS RESERVOIR(0067) IN= 2> OUT= 1 DT= 5.0 min	OVERFLOW	IS OFF STORAGE	1 OUT	FLOW	STORAGE
NOTE: PEAK FLOWS RESERVOIR(0067) IN= 2> OUT= 1	OVERFLOW	IS OFF STORAGE	1 OUT	FLOW	STORAGE
NOTE: PEAK FLOWS RESERVOIR(0067) IN= 2> OUT= 1 DT= 5.0 min	OVERFLOW OUTFLOW (cms) 0.0000	IS OFF STORAGE (ha.m.) 0.0000	0UT (c	FLOW NS) 6610	STORAGE (ha.m.) 0.9850
NOTE: PEAK FLOWS RESERVOIR(0067) IN= 2> OUT= 1 DT= 5.0 min	OVERFLOW OUTFLOW (cms) 0.0000 0.0400 0.0400	IS OFF STORAGE (ha.m.) 0.0000 0.1140 0.3590	0UT (c 0. 1.	FLOW NS) 6610 0960 4260	STORAGE (ha.m.) 0.9850 1.3320 1.5860
NOTE: PEAK FLOWS RESERVOIR(0067) IN= 2> OUT= 1 DT= 5.0 min	OVERFLOW OUTFLOW (cms) 0.0000 0.0400 0.0400	IS OFF STORAGE (ha.m.) 0.0000 0.1140	0UT (c 0. 1.	FLOW NS) 6610 0960 4260	STORAGE (ha.m.) 0.9850 1.3320 1.5860

 Inscrete
 OVERION IS OFF

 IB-2-2-0
 OUTION
 STORAGE
 OUTION
 STORAGE

 IB-2-2-0
 OUTION
 STORAGE
 OUTION
 STORAGE

 IB-2-2-0
 OUTION
 STORAGE
 OUTION
 STORAGE

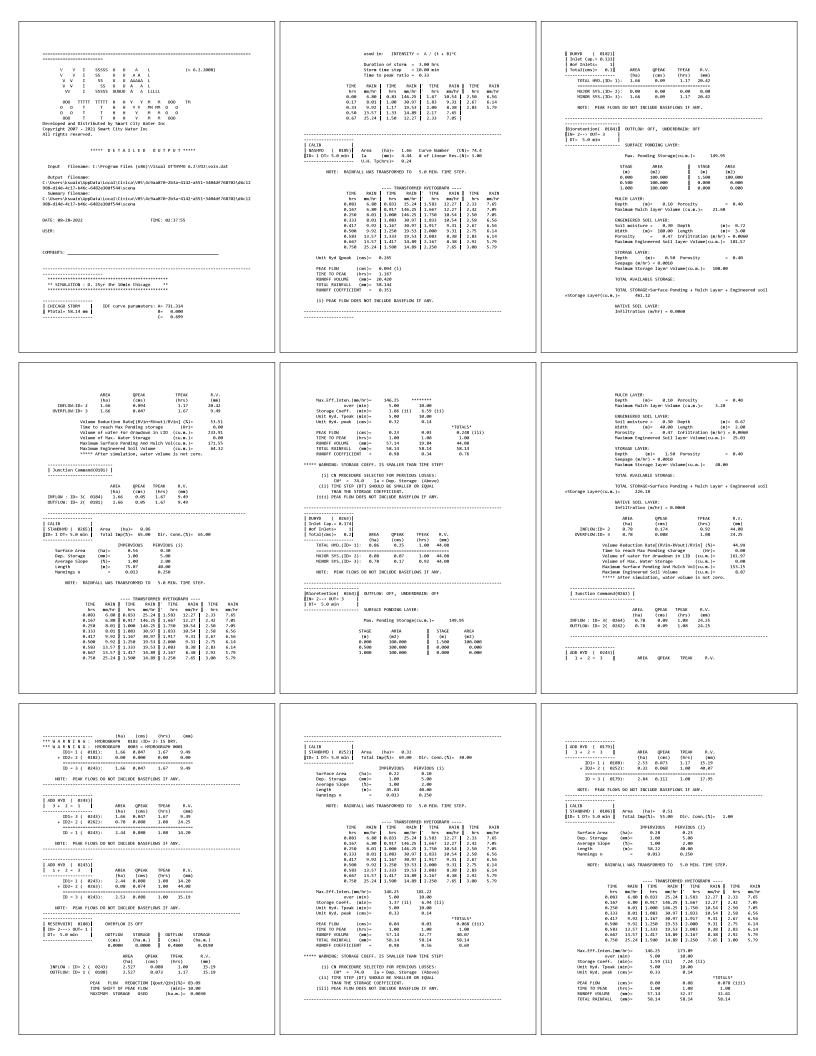
 IB-2-2-0
 OUTION
 STORAGE
 OUTION
 STORAGE

 IB-2-2-0
 OUTION
 STORAGE
 OUTION
 STORAGE

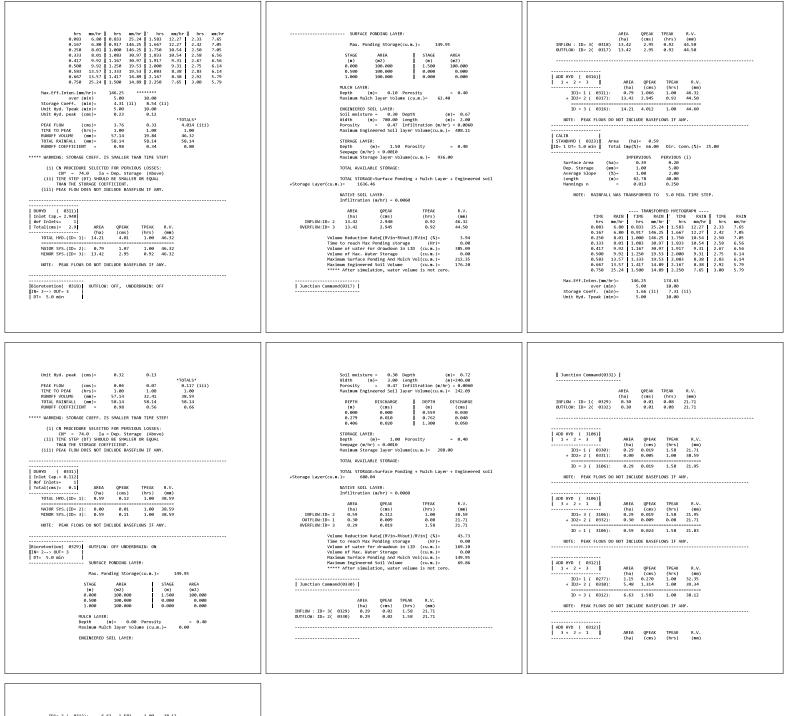
 (cm)
 OUTION
 STORAGE
 OUTION
 STORAGE

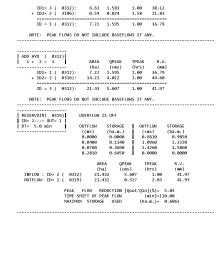
 (cm)
 OUTION
 STORAGE
 OUTION
 STORAGE

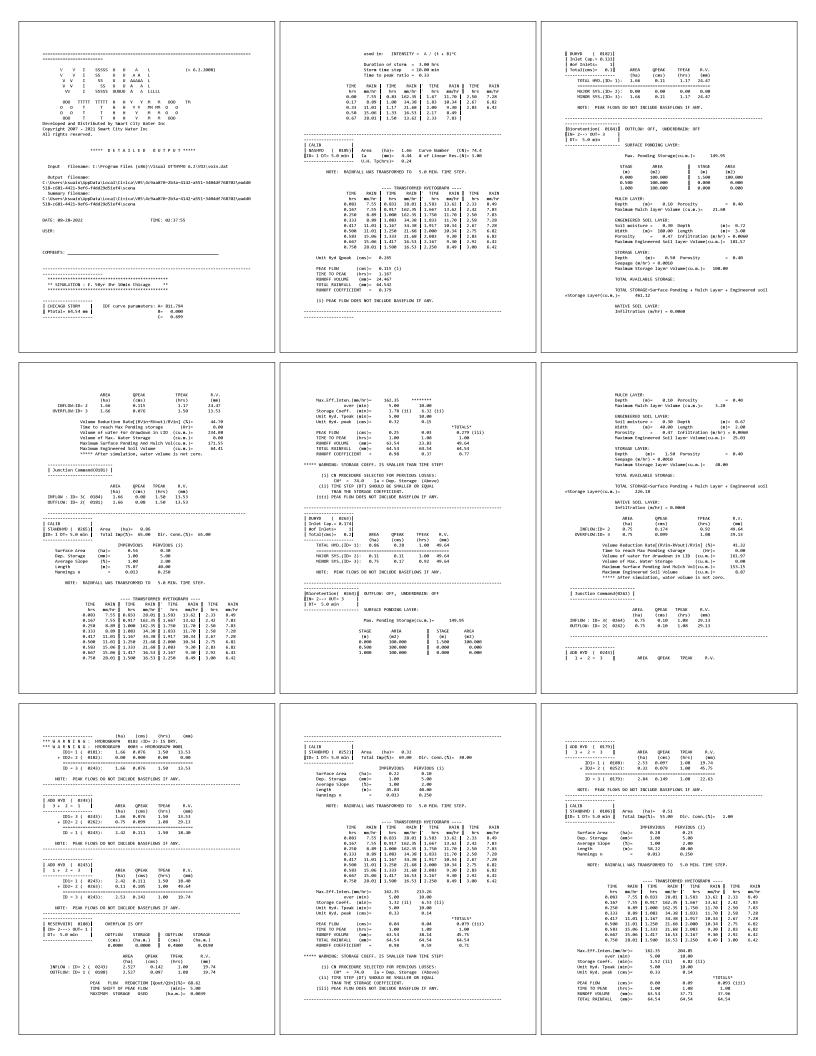
 0.0000
 0.0000
 0.0000
 0.0000
 1.0000
 1.3320

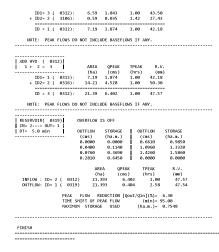

 0.2810
 0.6450
 1.0000
 0.0000
 0.0000
 0.0000
 0.0000

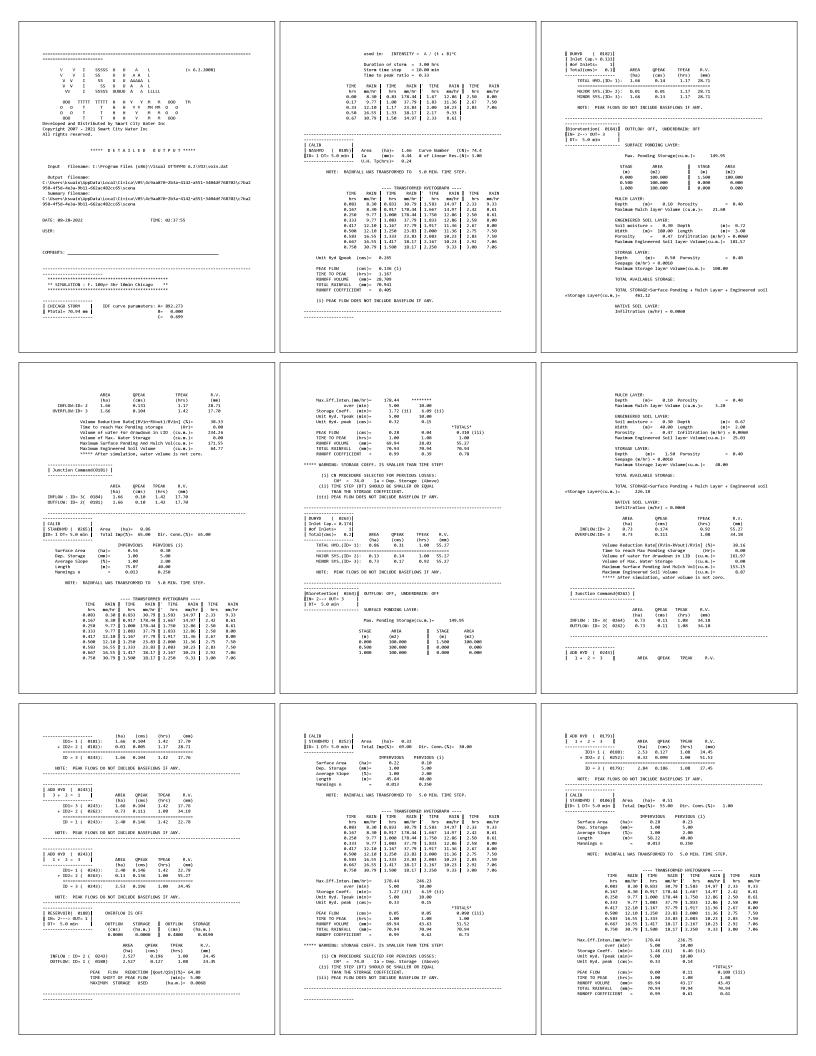
 MEX
 OVER
 TEAM
 FL
 0.0000
 0.0000
 0.0000

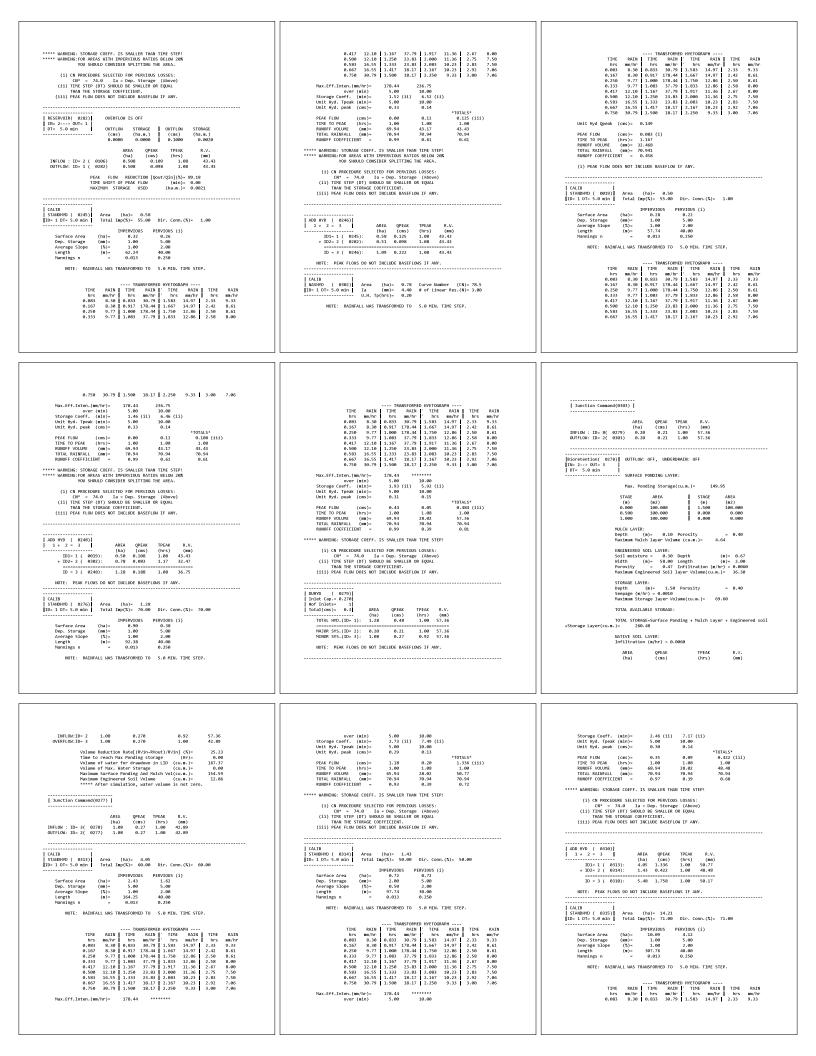

 INFLON
 STORAGE
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000

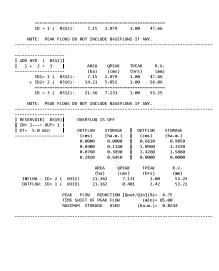

 INFLON
 STORAGE
 0.0000
 0.0000
 34.54
 0.0000
 34.54
 0.0000
 34.54
 0.0000
 3

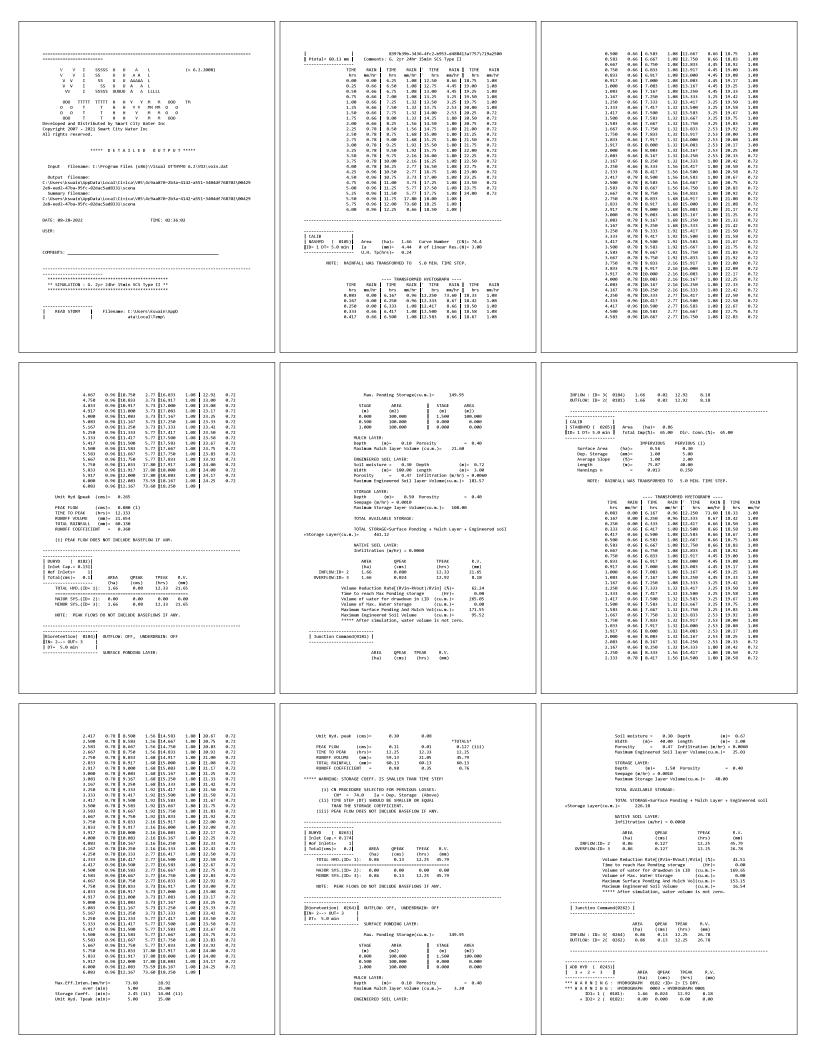

PEAK FLOW REDUCTION [Qout/Qin](%)= 5.10 TIME SHIFT OF PEAK FLOW (min)=120.00 MAXIMUM STORAGE USED (ha.m.)= 0.5883

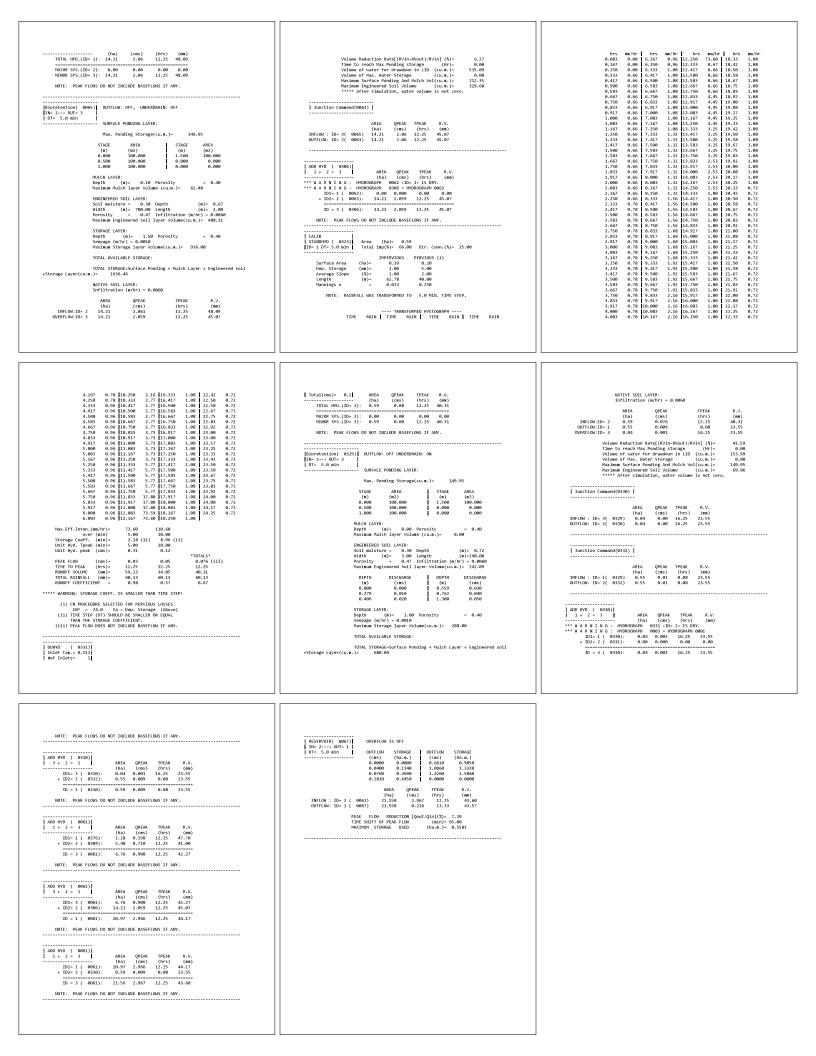


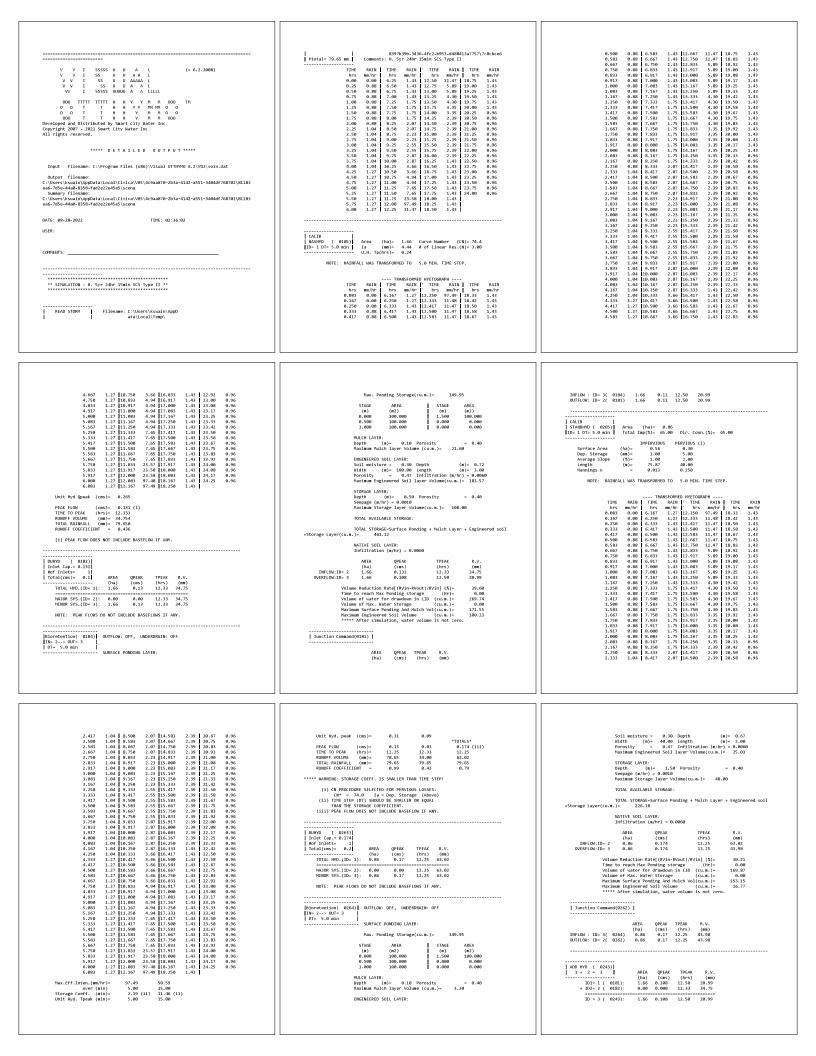


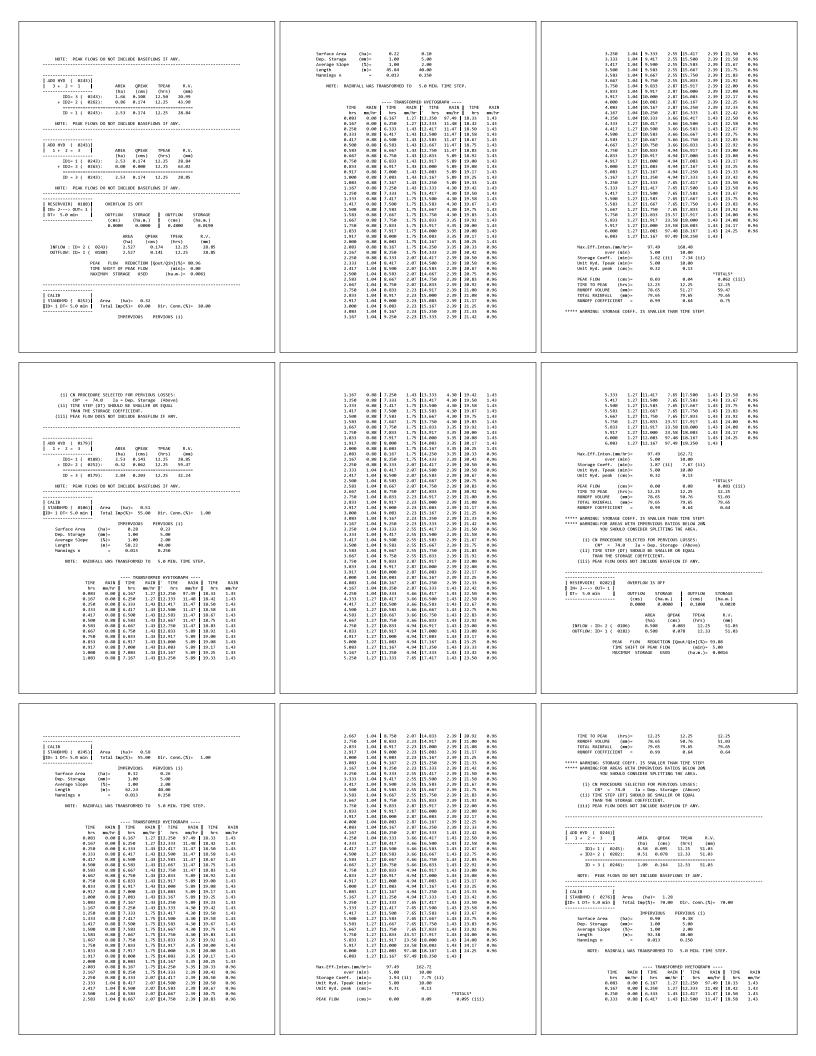


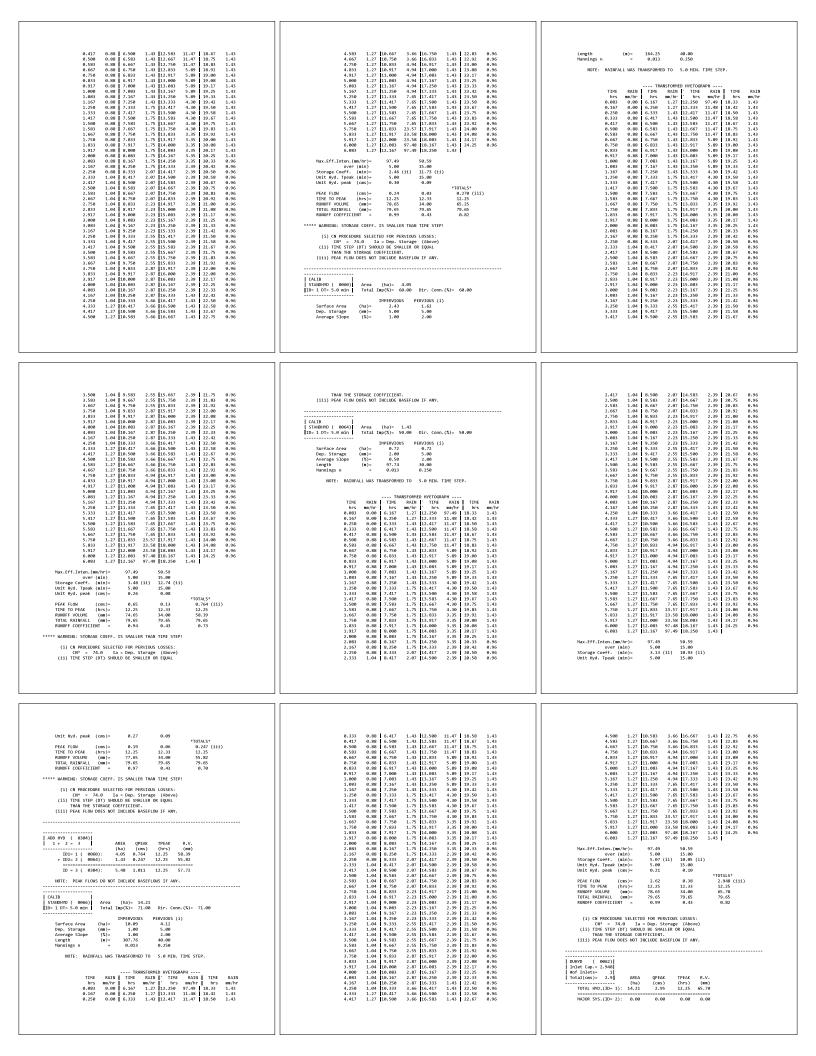


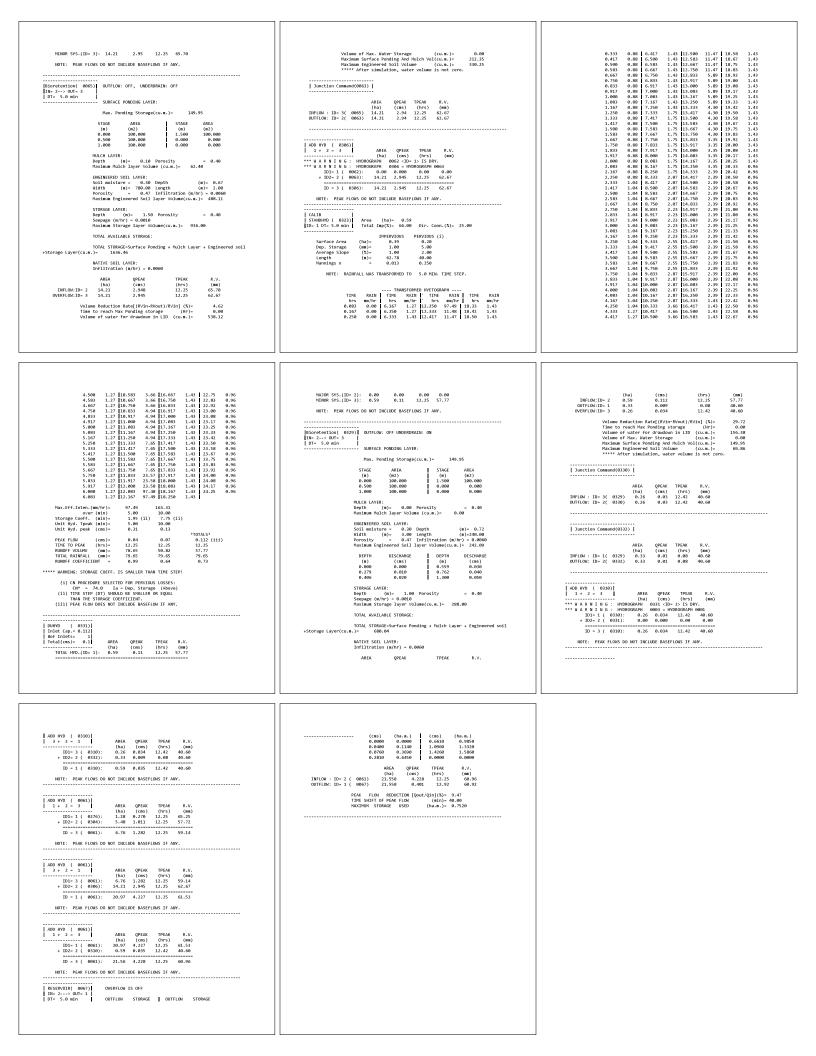


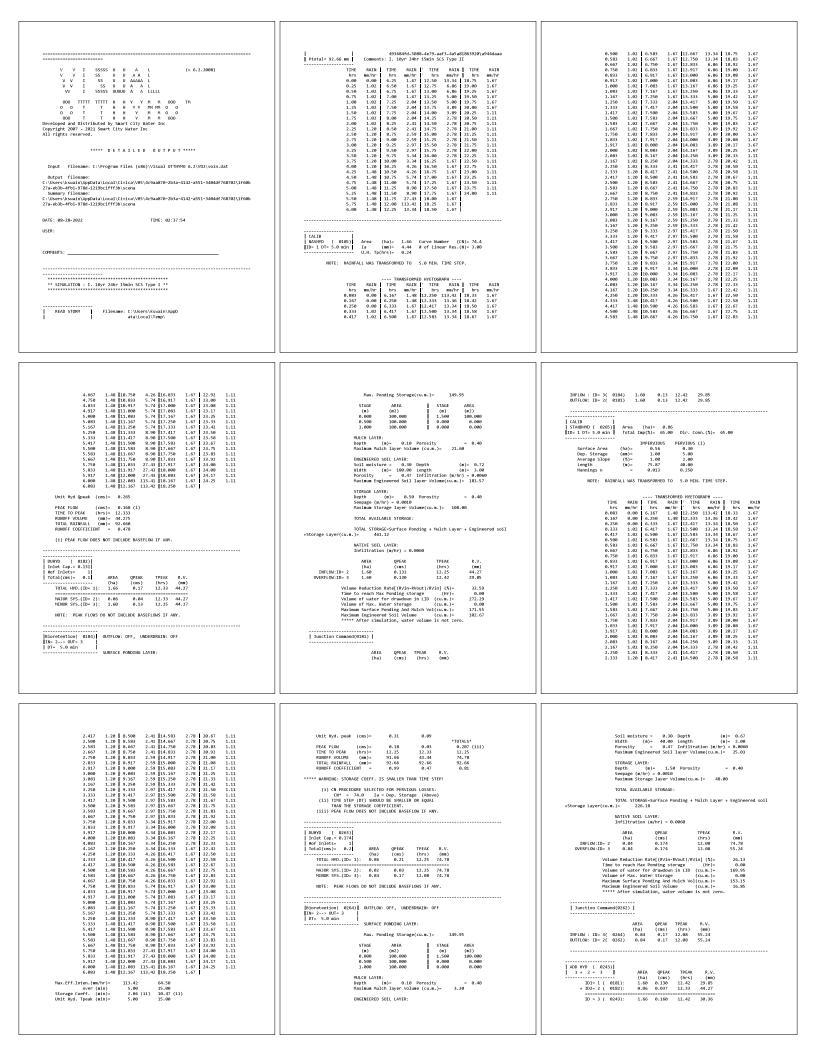


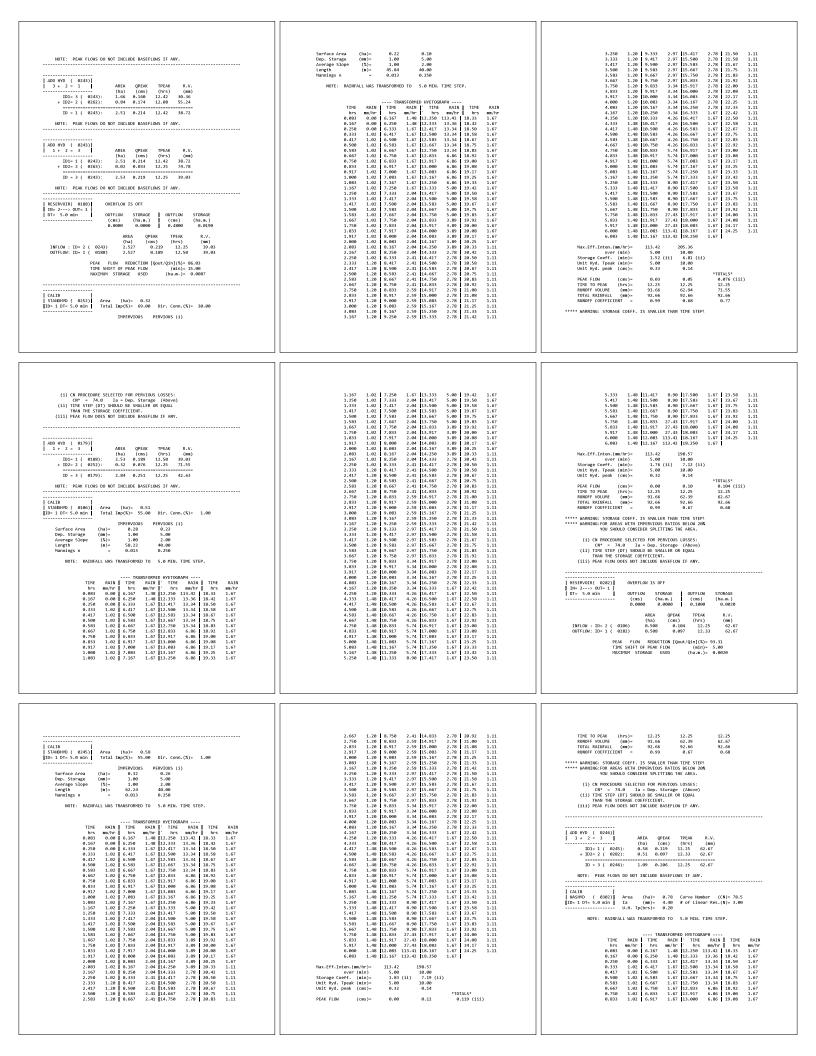


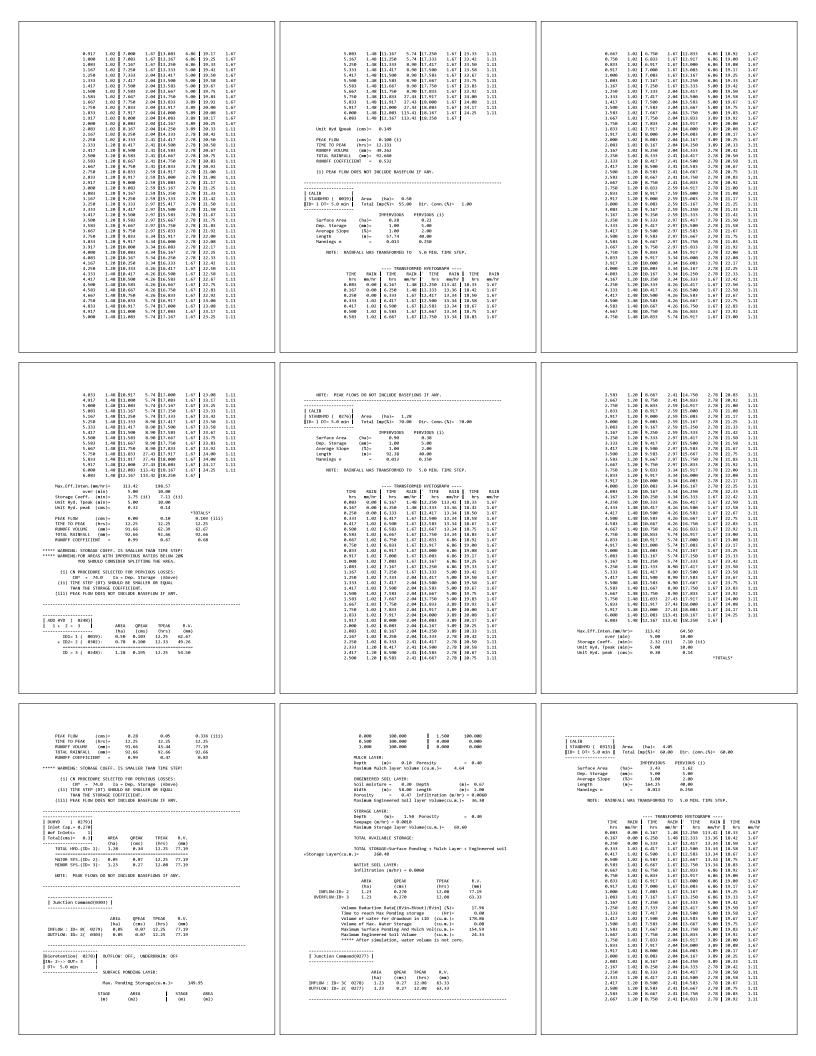


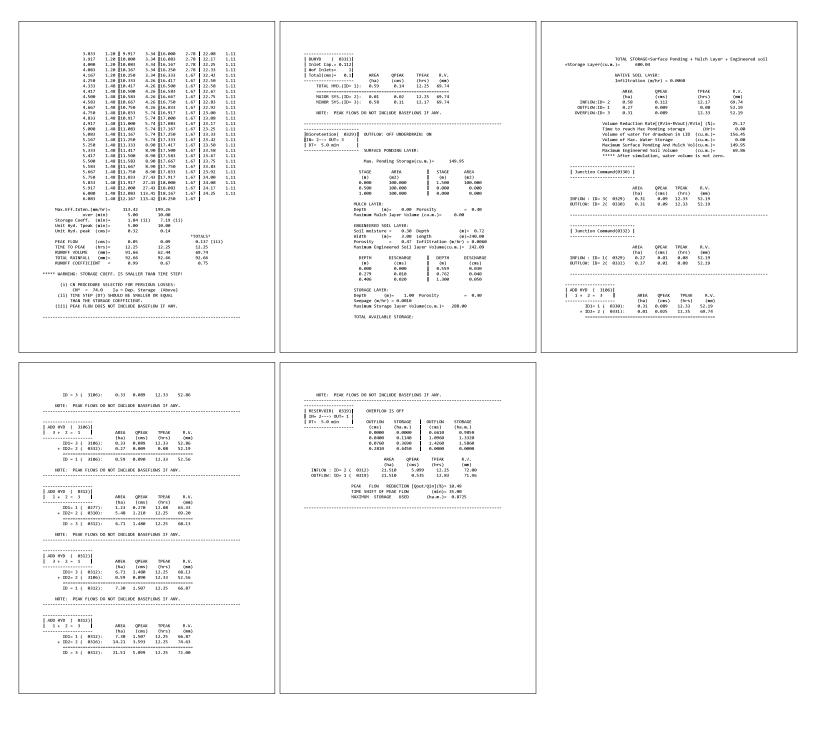

ID = 3 (0243): 1.666 0.024 12.92 0.18 ID = 3 (0243): 1.666 0.024 12.92 0.18 ID = 3 (0243): 1.666 0.024 12.92 0.18 ID = 3 (0243): 1.666 0.024 12.92 0.18 ID = 3 (0243): 1.666 0.024 12.92 0.18 ID = 3 (0243): 1.686 0.024 12.92 0.18 ID = 3 (0243): 0.686 0.127 12.25 2.67.8 ID = 3 (0243): 0.586 0.127 12.25 2.67.8 ID = 3 (0243): 0.58 0.0127 112.25 2.67.8 ID = 1 (0243): 0.58 0.010 II INCLUDE BASEFICMS IF AW. ID = 1 (0243): 1.53 0.010 II INCLUDE BASEFICMS IF AW. ID = 1 (0243): 2.53 0.127 12.25 14.63 ID = 3 (0243): 2.53 0.127 12.25 14.63 ID = 3 (0243): 2.53 0.127 12.25 14.63 ID = 3 (0243): 2.53 0.127 12.25 14.63 ID = 3 (0243): 2.53 0.127 12.25 14.63 ID = 3 (0243): 2.53 0.127 12.25 14.63 ID = 3 (0243): 2.53 0.127 12.25 14.63 ID = 3 (0243): 2.53 0.127 12.25 14.63 ID = 3 (0243): 2.53 0.127 12.25 14.63 ID = 3 (0243): 2.53 0.127 12.25 14.63 ID = 3 (0243): 2.53 0.127 12.25 14.63 ID = 3 (0243): 2.53 0.12	International and the state of the	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
MURFF COEFFICIENT = 0.98 0.57 0.78 **** MARINE: SIGNAGE COEFF. IS SMALLER THAN THE STEMI 1 . (1.9. DECIDINAL STEP STEP STEP STEP STEP STEP STEP STEP	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 5.000 & 0.96 & [1.083 & 3.73 & [7.167 & 1.08 & [23.25 & 0.72 \\ 5.083 & 0.96 & [1.167 & 3.73 & [7.157 & 1.08 & [23.23 & 0.72 \\ 5.167 & 0.60 & [1.150 & 3.73 & [7.157 & 1.08 & [23.24 & 0.72 \\ 5.137 & 0.96 & [1.160 & 5.77 & [7.167 & 1.08 & [23.25 & 0.72 \\ 5.137 & 0.96 & [1.160 & 5.77 & [7.17 & 1.08 & [23.42 & 0.72 \\ 5.137 & 0.96 & [1.160 & 5.77 & [7.17 & 1.08 & [23.42 & 0.72 \\ 5.138 & 0.96 & [1.167 & 5.77 & [7.75 & 1.08 & [23.42 & 0.72 \\ 5.138 & 0.96 & [1.167 & 5.77 & [7.75 & 1.08 & [23.43 & 0.72 \\ 5.138 & 0.96 & [1.167 & 5.77 & [7.75 & 1.08 & [23.43 & 0.72 \\ 5.138 & 0.96 & [1.167 & 5.77 & [7.75 & 1.08 & [23.43 & 0.72 \\ 5.138 & 0.96 & [1.167 & 5.77 & [7.75 & 1.08 & [24.08 & 0.72 \\ 5.133 & 0.96 & [1.208 & [7.10 & [1.60 & 1.08 &] \\ 5.138 & 0.96 & [1.208 & [7.10 & [1.60 & 3.168 & [24.17 & 0.72 \\ 6.208 & 0.96 & [1.208 & [7.10 & [1.60 & 1.08 &] \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0.00 \\ 5.100 & 0.00 & 0.00 & 0.00 & 0$
FIGS FIGUR TOW [Quit/Qin](5) = 54.97 FIGS FIGUR TOW [Quit/Qin](5) = 54.97 MACDMME STORAGE USED (man.) = 0.0010 MACDMME STORAGE USED (man.) = 0.0010 Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan= 2"	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	unit myd. Tpeak (sin): 5.60 10.60 unit myd. Tpeak (sin): 0.31 ''''''''''''''''''''''''''''''''''''

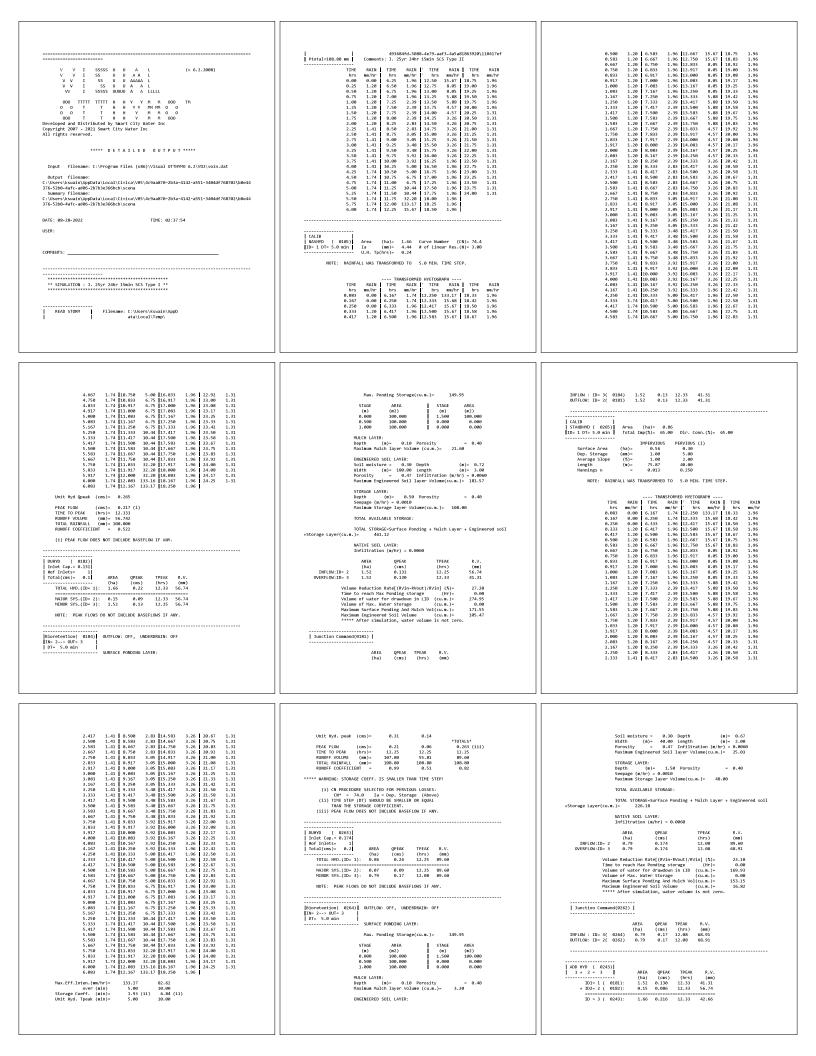

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.250 0.78 10.333 2.77 16.417 1.08 22.50 0.72 4.330 0.06 10.407 2.77 16.530 1.08 22.59 0.72 4.500 0.66 10.580 2.77 16.50 1.08 22.59 0.72 4.570 0.66 10.70 2.77 16.50 1.08 22.83 0.72 4.677 0.66 10.70 2.77 16.730 1.08 22.83 0.72 4.677 0.66 10.70 2.77 16.631 1.08 22.83 0.72 4.677 0.66 10.70 2.77 16.530 1.08 22.83 0.72 4.677 0.66 11.03 3.7 17.157 1.08 22.83 0.72 4.677 0.66 11.03 3.7 17.157 1.08 22.83 0.72 5.080 0.96 11.083 3.7 17.167 1.08 22.83 0.72 5.080 0.96 11.083 3.7 17.167 1.08 22.85 0.72 5.080 0.96 11.083 3.7 17.167 1.08 22.85 0.72 5.080 0.96 11.083 3.7 17.167 1.08 22.85 0.72 5.080 0.96 11.103 5.77 17.50 1.08 22.85 0.72 5.080 0.96 11.133 5.77 17.50 1.08 22.85 0.72 5.080 0.96 11.133 5.77 17.50 1.08 22.85 0.72 5.333 0.96 11.1.37 5.77 17.50 1.08 22.85 0.72 5.583 0.96 11.137 5.77 17.50 1.08 22.85 0.72 5.70 0.96 11.138 5.77 17.783 1.08 22.96 0.72 5.70 0.96 11.138 5.77 17.783 1.08 22.96 0.72 5.70 0.96 11.70 5.77 17.50 1.08 22.55 0.72 5.70 0.96 11.70 5.77 17.50 1.08 22.55 0.72 5.70 0.96 11.730 5.77 11.763 1.08 22.57 0.72 5.70 0.96 11.730 5.77 11.763 1.08 22.90 0.72 5.70 0.96 11.730 5.77 11.763 1.08 22.90 0.72 5.70 0.96 11.70 5.77 11.783 1.08 22.90 0.72 5.70 0.96 11.70 5.77 11.783 1.08 22.90 0.72 5.70 0.96 11.70 5.77 11.783 1.08 22.90 0.72 5.70 0.96 11.70 5.77 11.783 1.08 22.90 0.72 5.70 0.96 11.70 5.77 1.91 0.12.40 0.72 5.70 0.96 11.70 5.77 1.91 0.12.40 0.72 5.00 0.95 (1.107 1.785 1.91 1.79 1.08 22.00 0.72 5.00 0.95 (1.107 1.785 1.107 1.08 22.10 0.72 5.00 0.95 (1.107 1.187 1.197 1.18 22.90 0.72 5.00 0.95 (1.107 1.197 1.197 1.18 12.90 1.08 1.00 0.72 5.00 0.95 (1.107 1.197 1.197 1.197 1.108 1.24 0.00 0.72 5.00 0.95 (1.107 1.197 1.197 1.197 1.108 1.24 0.00 0.72 5.00 0.95 (1.107 0.197 1.197 1.197 1.197 1.108 1.24 0.00 0.72 5.00 0.100 0.100 0.100 0.100 0.100 0.1000 0.1000 0.1000 0.1000 0.1000 0.10000 0.100000000	$\begin{array}{c} \text{IPFENUOS} \text{PEVIOS} (1) \\ Formation of the second of the se$
3.467 0.78 0.78 0.720 1.500 1.501 1.5333 1.00 2.1.40 0.72 3.433 0.78 0.437 1.52 15.500 1.00 2.1.50 0.72 3.437 0.78 0.500 0.12 15.533 1.00 2.1.57 0.72 3.437 0.78 0.500 0.78 0.120 1.5530 1.00 2.1.57 0.72 3.530 0.78 0.530 1.20 1.5530 1.00 2.1.75 0.72 3.530 0.78 0.530 1.20 15.507 1.00 2.1.50 0.72 3.530 0.78 0.581 1.20 15.507 1.00 2.2.50 0.72 3.633 0.78 0.971 1.20 15.570 1.00 2.2.60 0.72 3.633 0.78 0.971 1.20 15.570 1.00 2.2.60 0.72 3.633 0.78 0.971 1.00 2.16 15.007 1.00 2.2.60 0.72 3.633 0.78 0.971 1.00 2.16 15.007 1.00 2.2.60 0.72 3.633 0.78 0.971 1.00 2.16 15.007 1.00 2.2.60 0.72 4.600 0.78 10.607 2.77 15.530 1.00 2.2.60 0.72 4.600 0.78 10.607 2.77 15.530 1.00 2.2.60 0.72 4.600 0.78 10.607 2.77 15.530 1.00 2.2.60 0.72 4.600 0.78 10.607 2.77 15.530 1.00 2.2.60 0.72 4.600 0.78 10.607 2.77 15.530 1.00 2.2.60 0.72 4.600 0.76 10.607 2.77 15.530 1.00 2.2.60 0.72 4.600 0.76 10.607 2.77 15.530 1.00 2.2.60 0.72 4.600 0.76 10.607 2.77 15.530 1.00 2.2.60 0.72 4.600 0.56 10.607 2.77 15.530 1.00 2.2.60 0.72 4.600 0.56 10.607 2.77 15.530 1.00 2.2.60 0.72 4.600 0.56 10.607 2.77 15.530 1.00 2.2.60 0.72 4.600 0.56 10.607 2.77 15.530 1.00 2.2.60 0.72 4.607 0.56 10.507 2.77 15.530 1.00 2.2.60 0.72 4.607 0.56 10.507 2.77 15.530 1.00 2.2.60 0.72 4.607 0.56 10.507 2.77 15.530 1.00 2.2.60 0.72 4.607 0.56 10.507 2.77 15.530 1.00 2.2.60 0.72 4.607 0.56 10.507 2.77 15.530 1.00 2.2.60 0.72 5.600 0.56 11.633 3.73 17.157 1.00 2.2.60 0.72 5.600 0.56 11.633 3.73 17.157 1.00 2.2.60 0.72 5.600 0.56 11.633 3.73 17.157 1.00 2.2.60 0.72 5.600 0.56 11.230 3.73 17.250 1.00 2.2.70 0.72 5.600 0.56 11.230 3.73 17.250 1.00 2.2.70 0.72 5.600 0.56 11.230 3.73 17.250 1.00 2.2.70 0.72 5.600 0.56 11.230 3.73 17.250 1.00 2.2.70 0.72 5.600 0.56 11.230 3.73 17.250 1.00 2.2.70 0.72 5.600 0.56 11.230 3.73 17.250 1.00 2.2.70 0.72 5.600 0.56 11.230 3.73 17.250 1.00 2.2.70 0.72 5.600 0.56 11.230 3.73 17.250 1.00 2.2.70 0.72 5.600 0.56 11.230 3.73 17.250 1.00 2.2.70 0.72 5.600 0.56 11.230 3.73 17.250 1.00 2.2.70 0.72 5.600 0.5	(1) CH PROFEDRE SELECTED FOR PERVICUS LOSSES: (1) THE STEP (0) SHOULD BE SAULER ON EQUAL THAN THE STORAGE COFFICIENT. (3) THE STEP (0) SHOULD BE SAULER ON EQUAL THAN THE STORAGE COFFICIENT. (4) THAN THE STORAGE COFFICIENT. (4) THAN THE STORAGE COFFICIENT. (4) THAN THE STORAGE COFFICIENT. (4) THAN THE STORAGE COFFICIENT. (4) THAN THE STORAGE COFFICIENT. (4) THAN THE STORAGE COFFICIENT. (4) THAN THE STORAGE COFFICIENT. (4) THAN THE STORAGE COFFICIENT. (4) THAN THAN THAN THAN THAN THAN THAN THAN	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Max. Eff. Inten. (m/m):= 73.60 31.37 Storage coverf. (m/m):= 3.53 (11) 12.95 (11) Storage coverf. (m/m):= 3.53 (11) 12.95 (11) Mitt Hud, Tpeak (m):= 5.26 0.68 TUTLS* FXM FDM (m):= 5.23 (12) 12.95 (11) 10.75 (11) TIME TO FEAK (m):= 5.23 (12) 2.25 (12) 12.25 (12) TIME TO FEAK (m):= 6.33 (60.13 (60.13 (60.13 (60.13 (60.13 (60.13 (60.13 (60.13 (60.14 (60.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.157 0.77 10.258 2.25 10.233 1.08 22.42 0.72 4.153 0.66 10.417 2.77 16.500 1.08 22.58 0.72 4.133 0.66 10.417 2.77 16.500 1.08 22.67 0.72 4.133 0.66 10.583 2.77 16.500 1.08 22.67 0.72 4.530 0.66 10.583 2.77 16.531 1.08 22.67 0.72 4.530 0.56 10.583 2.77 10.590 1.08 22.68 0.72 4.530 0.56 10.533 3.71 116.507 1.08 22.58 0.72 4.633 0.56 10.537 3.71 17.600 1.08 2.080 0.72 4.633 0.56 10.577 3.73 17.700 1.08 2.258 0.72 5.167 0.56 11.260 3.73 17.738 1.08 2.258 0.72 5.133 0.56 11.277 7.71 1.08 2.538 0.72

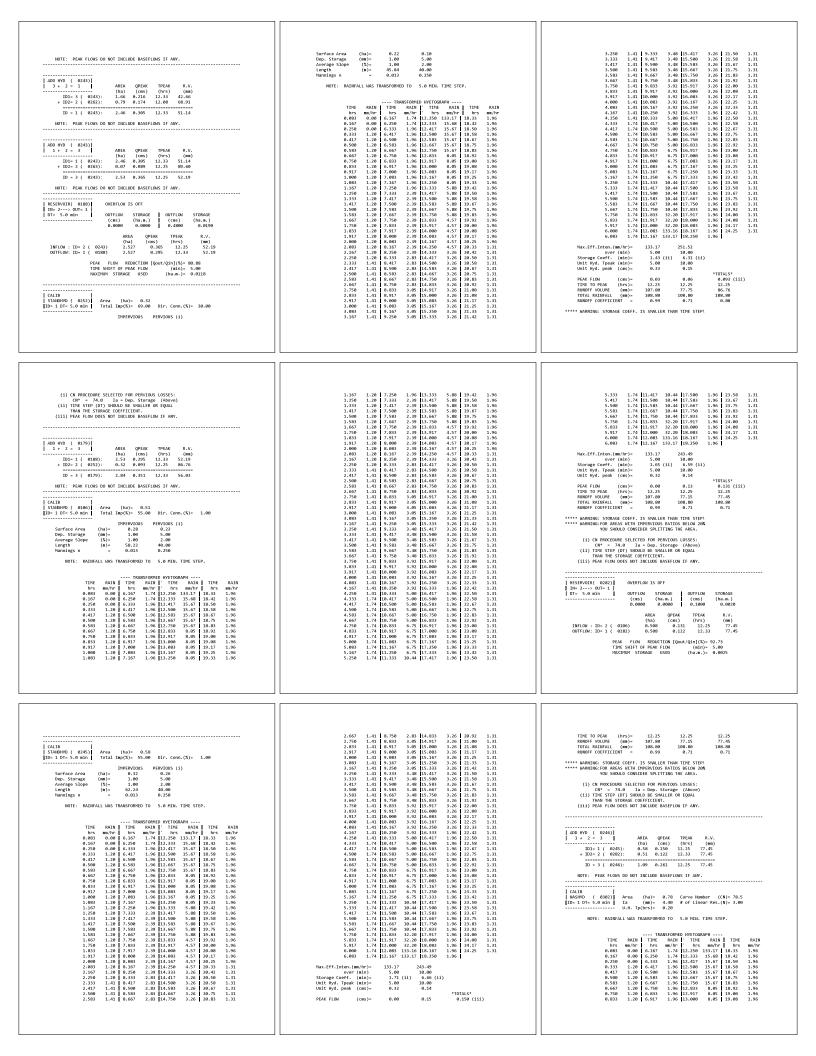


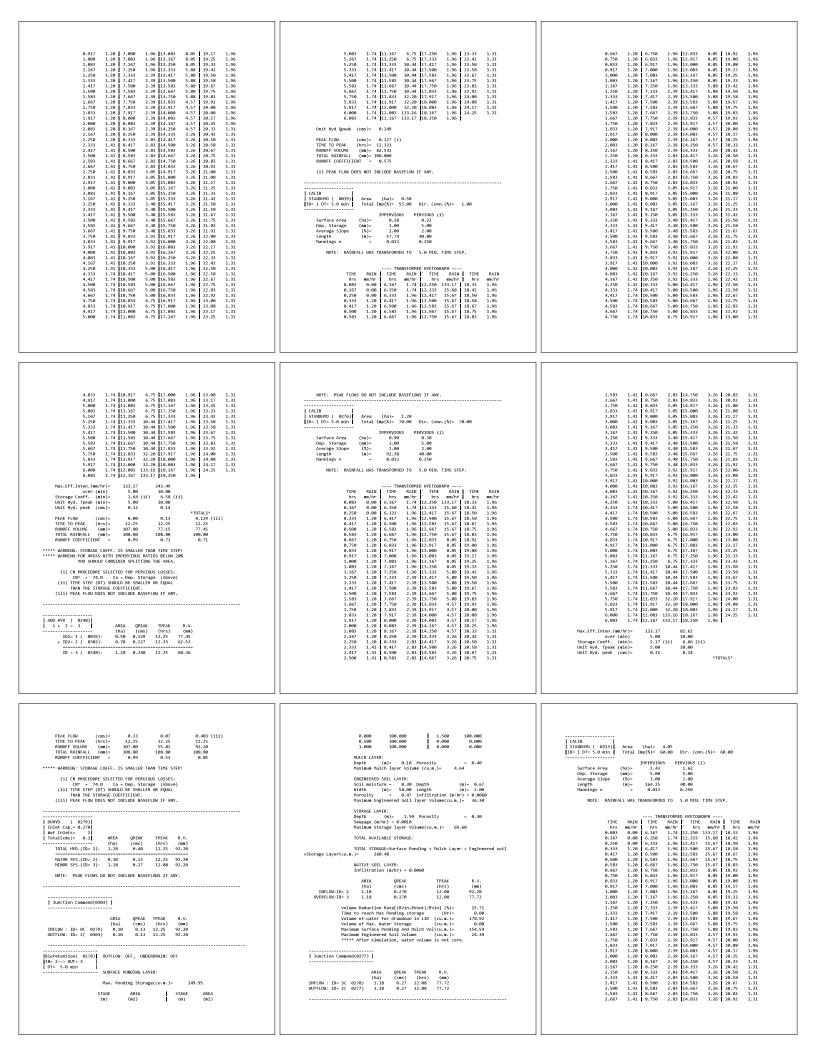




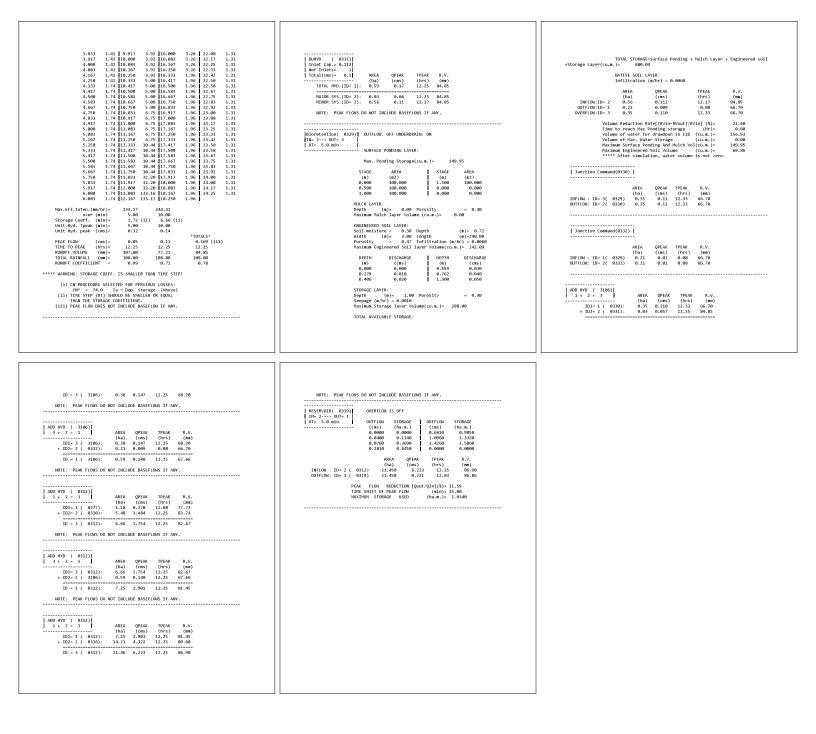




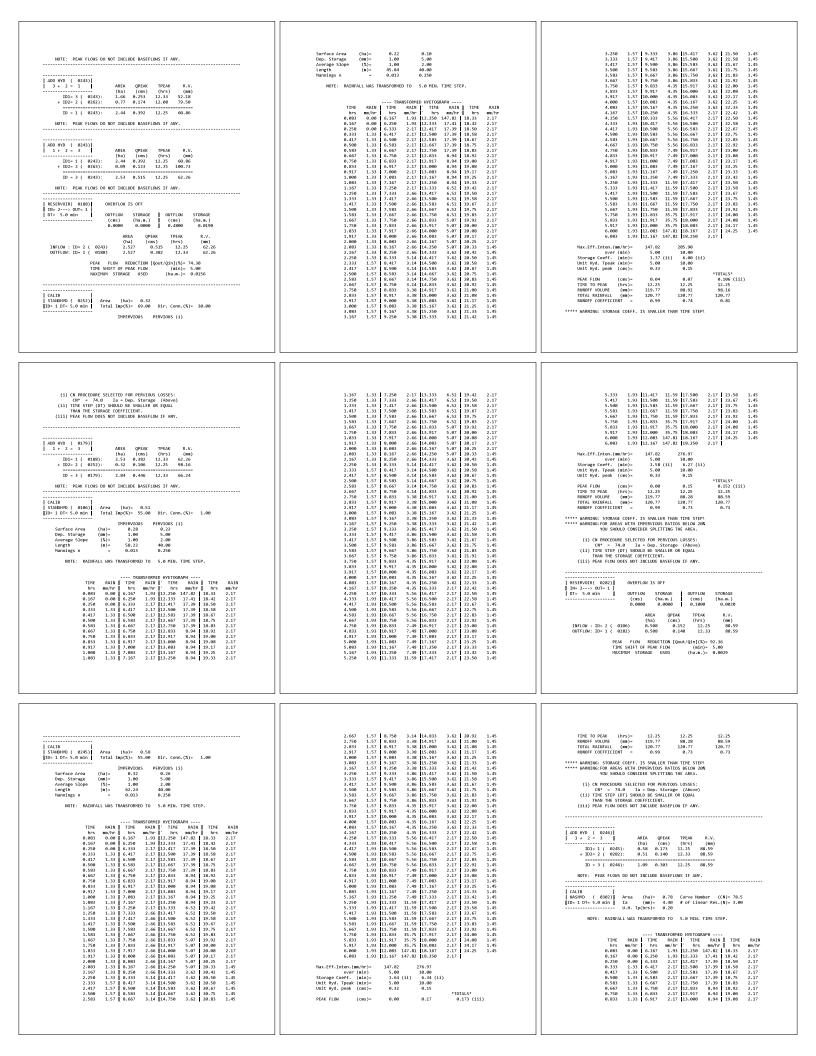


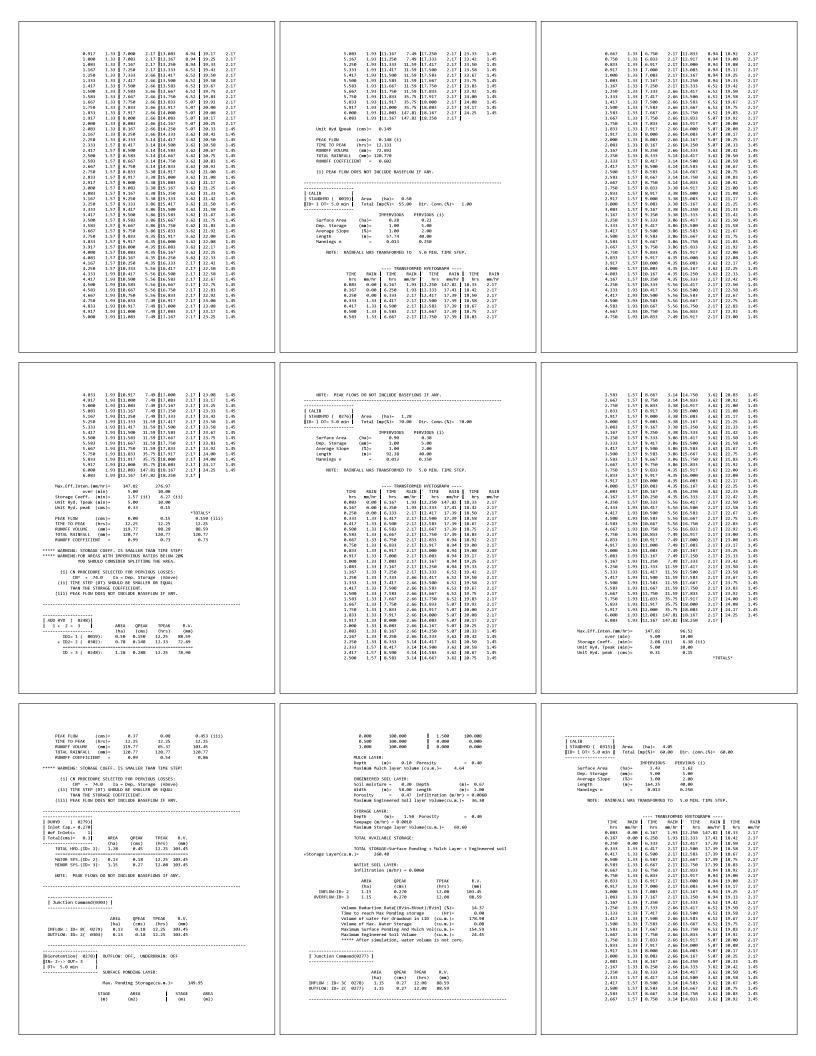


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>HOTE: MAINFALL MAS TRANSFORMED TO 5.0 MIN. TIPE STAF.</pre>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Durry: (0333) Infet (ap. 2.948) ARA (074M, TPEAK R.Y.) I Total(ms): 2.31 I Total(ms): 2.31 MUDD SYS.(Do 3): 13.42 MUDD SYS.(Do 3): 13.42 <td< td=""><td><pre>LIFiltration (#/hr) = 0.0000 A66</pre></td><td>TIME ALM TIME ALM ALM TIME ALM ALM</td></td<>	<pre>LIFiltration (#/hr) = 0.0000 A66</pre>	TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM TIME ALM ALM TIME ALM ALM

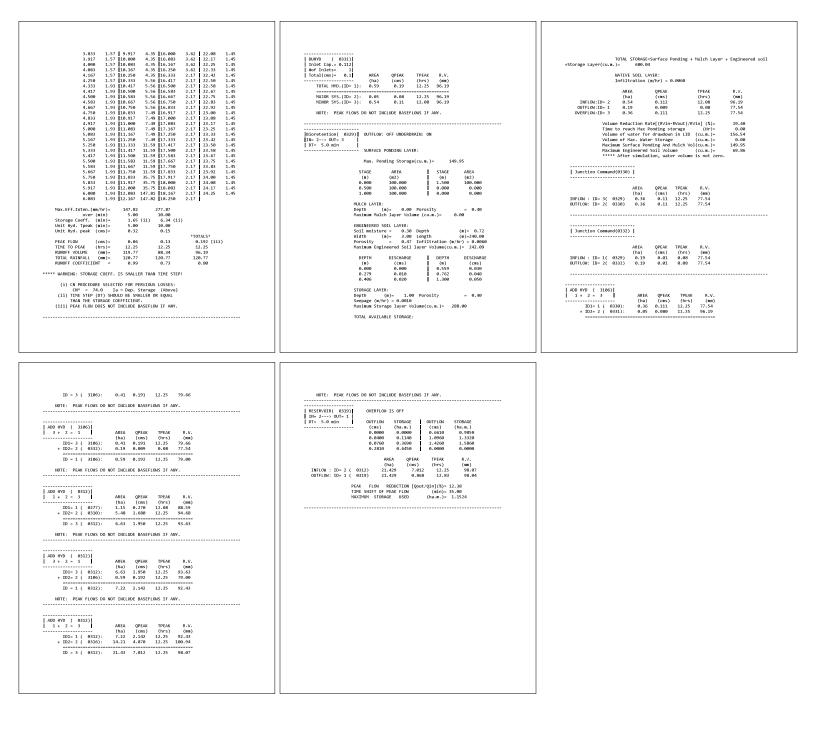


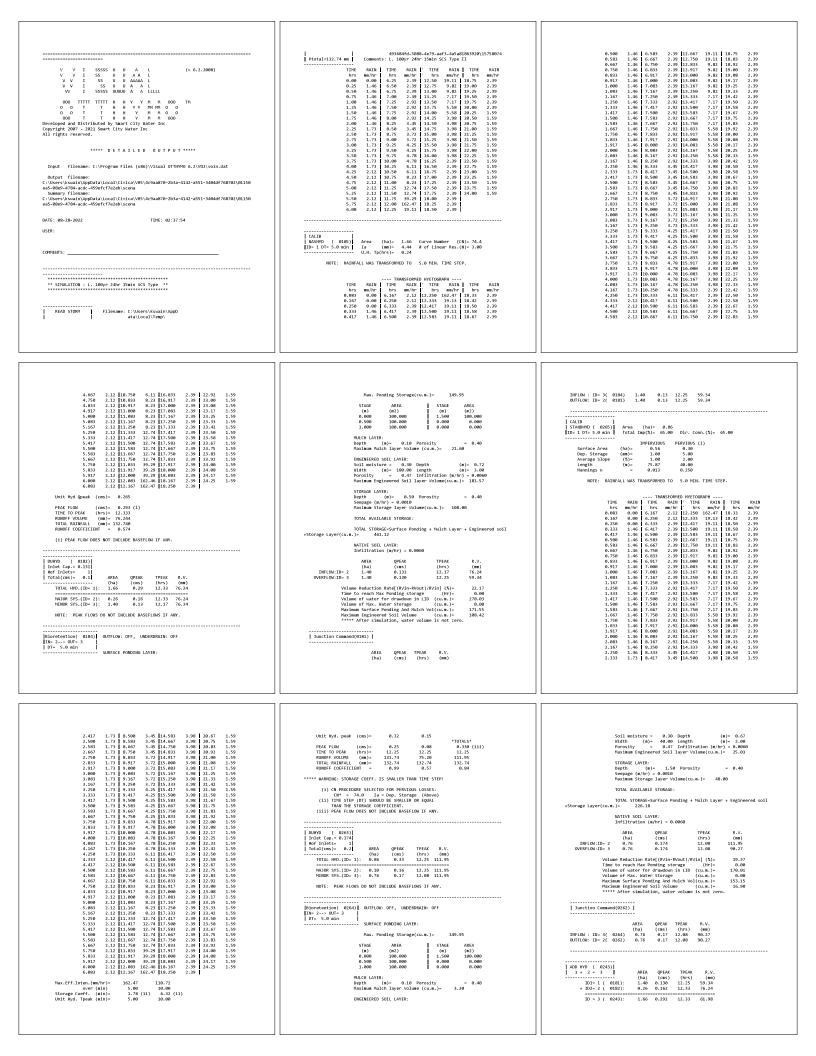




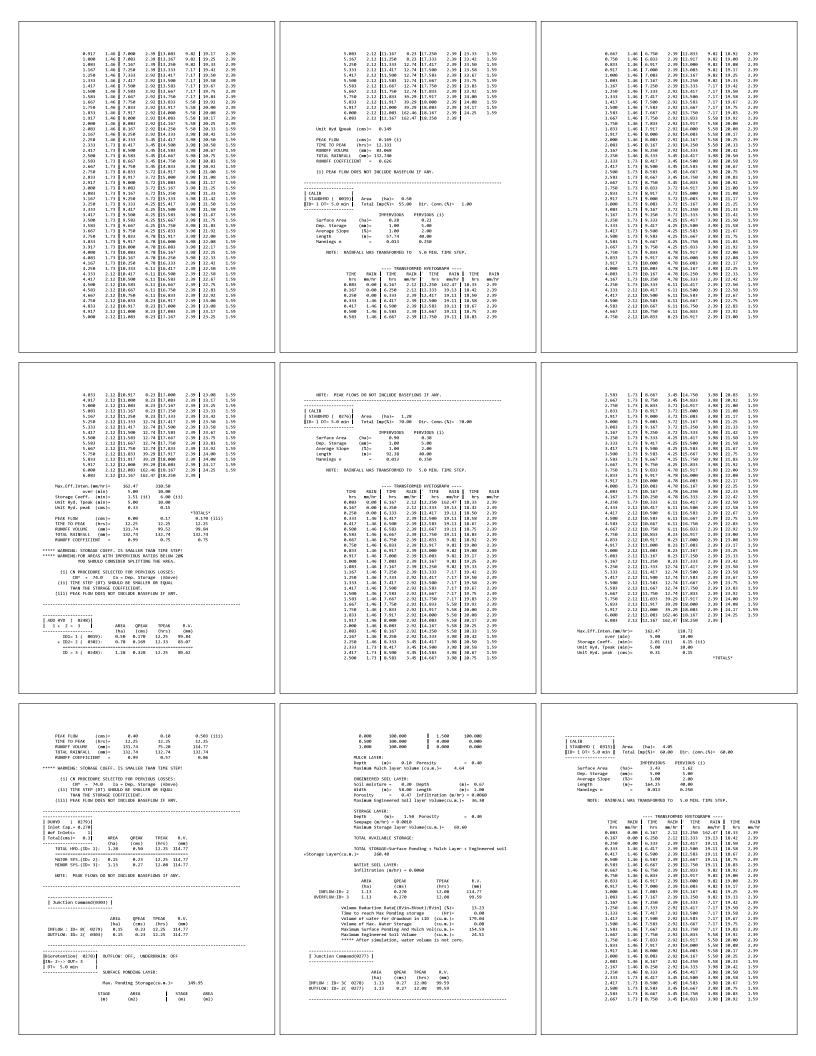


$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.750 1.41 9.833 3.92 15.917 3.26 22.00 1.31 3.633 1.41 9.917 3.92 16.000 3.76 22.00 1.31 1.017 1.41 10.067 3.92 16.000 3.76 22.75 1.33 4.033 1.41 10.767 3.92 16.250 3.76 22.33 1.31 4.033 1.41 10.75 3.92 16.250 3.76 22.33 1.31 4.131 4.131 1.41 10.75 3.92 16.250 3.16 22.57 1.31 4.131 4.131 1.41 10.75 3.92 16.250 3.196 22.4 1.31 4.135 1.41 10.75 3.92 16.250 3.196 22.75 1.31 4.131 4.131 1.41 10.75 3.92 16.250 3.196 22.75 1.31 4.131 4.131 1.41 10.75 3.92 16.250 3.196 22.75 1.31 4.151 1.41 10.75 3.92 16.250 3.196 22.75 1.31 4.151 1.41 10.750 5.00 16.643 1.96 22.75 1.31 4.151 1.41 10.750 5.00 16.643 1.96 22.75 1.31 4.151 1.41 10.750 5.00 16.643 1.96 22.75 1.31 4.560 1.74 10.583 5.00 16.643 1.96 22.75 1.31 4.561 1.74 10.760 5.70 16.67 1.96 22.75 1.31 5.060 1.74 11.060 6.77 17.76 17.00 1.96 23.25 1.31 5.060 1.74 11.06 6.78 17.740 1.96 23.25 1.31 5.060 1.74 11.06 6.78 17.740 1.96 23.50 1.31 5.060 1.74 11.06 6.78 17.740 1.96 23.50 1.31 5.060 1.74 11.06 1.06 417.759 1.96 23.50 1.31 5.060 1.74 11.067 10.44 17.509 1.96 23.55 1.31 5.033 1.74 11.47 10.44 17.509 1.96 23.55 1.31 5.030 1.74 11.037 10.44 17.759 1.96 23.57 1.31 5.030 1.74 11.037 10.44 17.759 1.96 23.57 1.31 5.030 1.74 11.037 10.44 17.759 1.96 23.57 1.31 5.030 1.74 11.037 10.44 17.759 1.96 23.57 1.31 5.030 1.74 11.037 10.44 17.759 1.96 23.57 1.31 5.030 1.74 11.320 13.44 17.509 1.96 23.57 1.31 5.030 1.74 11.320 13.54 10.54 17.559 1.96 23.75 1.31 5.030 1.74 11.333 12.26 18.000 5.030 1.74 11.333 12.26 18.000 5.030 1.74 11.333 12.26 18.000 5.030 1.74 11.333 12.26 18.000 5.030 1.74 11.330 13.31 18.157 1.39 23.00 1.30 5.030 1.74 11.330 13.35 18.157 1.39 23.20 1.30 5.030 1.74 11.330 13.35 18.157 1.39 23.20 1.30 5.030 1.74 11.300 13.35 18.157 1.39 23.20 1.30 5.030 1.74 11.300 13.35 18.157 1.39 23.20 1.30 5.030 1.74 12.003 13.31 18.157 1.39 23.20 1.30 5.030 1.74 12.003 13.31 18.157 1.39 23.20 1.30 5.030 1.74 12.003 13.31 18.157 1.39 23.20 1.30 5.030 1.74 12.003 13.33 18.157 1.39 1.30 1.30 5.030 1.08.80 5.030 1.08.80 5.030 1.08.80
Index (as) 2.3 Index (as) 2.3 </td <td>Infiltration (w/nr) = 0.0060 AREA (0) (0) (1) 0) (1) (1) (1) (1) 0) (1) (1) (1) (1) 0) 0) (1) (1) (1) (1) 0) 0) (1) (1) (1) (1) 0) 0) (1) (1) (1) (1) (1) 0) (1) (1) (1) (1) (1) 0) (1) (1) (1) (1) (1) 0) 0) (1) (1) (1) (1) (1) 0) 0) 0) (1) (1) (1) (1) (1) (1) 0) 0) 0) 0) (1) (1) (1) (1) (1) 0) <</td> <td> TRANSFORMED INFECOGRAPI TAT TPE ALIA TPE ALIA TPE BALIA Des MUT TPE ALIA TPE BALIA TPE BALIA 0.08 6.09 6.107 1.74 12.233 15.66 13.42 1.96 0.250 0.08 6.33 1.96 12.433 15.61 15.69 1.96 0.530 1.28 6.47 1.96 12.59 15.67 15.69 1.96 0.581 1.28 6.67 1.96 12.759 15.67 15.83 1.96 0.610 1.28 6.687 1.96 12.090 8.69 12.91 1.96 0.912 1.28 6.667 1.96 12.99 1.96</td>	Infiltration (w/nr) = 0.0060 AREA (0) (0) (1) 0) (1) (1) (1) (1) 0) (1) (1) (1) (1) 0) 0) (1) (1) (1) (1) 0) 0) (1) (1) (1) (1) 0) 0) (1) (1) (1) (1) (1) 0) (1) (1) (1) (1) (1) 0) (1) (1) (1) (1) (1) 0) 0) (1) (1) (1) (1) (1) 0) 0) 0) (1) (1) (1) (1) (1) (1) 0) 0) 0) 0) (1) (1) (1) (1) (1) 0) <	TRANSFORMED INFECOGRAPI TAT TPE ALIA TPE ALIA TPE BALIA Des MUT TPE ALIA TPE BALIA TPE BALIA 0.08 6.09 6.107 1.74 12.233 15.66 13.42 1.96 0.250 0.08 6.33 1.96 12.433 15.61 15.69 1.96 0.530 1.28 6.47 1.96 12.59 15.67 15.69 1.96 0.581 1.28 6.67 1.96 12.759 15.67 15.83 1.96 0.610 1.28 6.687 1.96 12.090 8.69 12.91 1.96 0.912 1.28 6.667 1.96 12.99 1.96

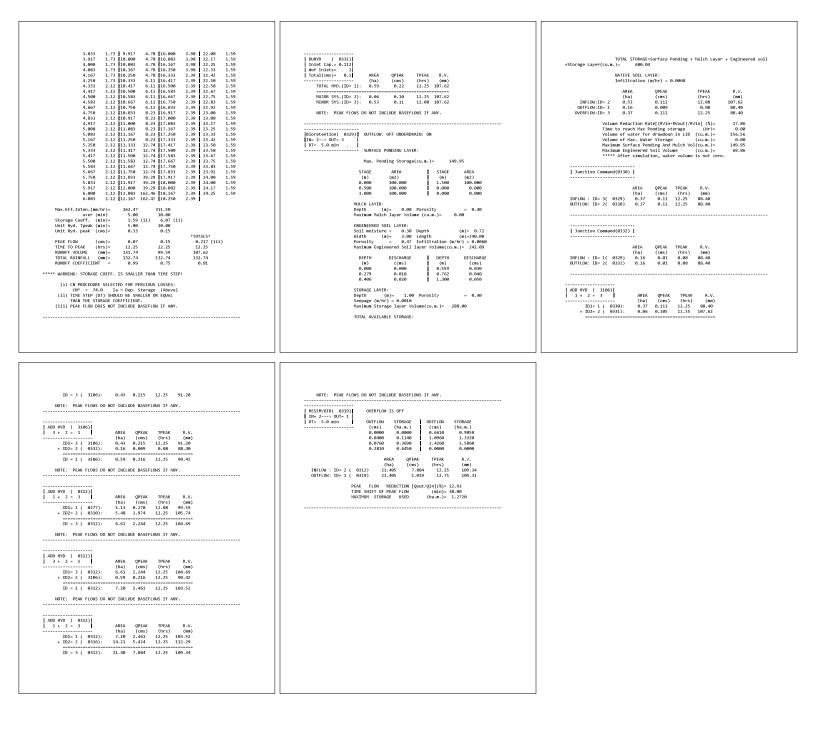








$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{split} & RUNOFF VOLUME (100) = 115, 77 55, 77 95, 61 02.07 120.0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NOTE: RAINFALL MAS TRANSFORMED 10 5.0 RTM. TIME STEP.	3.750 1.57 9.833 4.35 15.917 3.62 22.00 1.65 3.833 1.57 19.937 4.3 16.000 3.6 22.08 1.45 3.910 1.57 10.067 4.35 16.007 3.6 22.08 1.45 4.031 1.57 10.057 4.35 16.207 3.6 22.08 1.45 4.031 1.57 10.157 4.35 16.207 3.6 22.03 1.45 4.031 1.57 10.157 4.35 16.207 3.6 22.03 1.45 4.031 1.57 10.157 4.35 16.207 3.7 12.03 1.45 4.230 1.57 10.133 5.56 16.47 2.17 12.2.5 1.45 4.250 1.57 10.333 5.56 16.47 2.17 12.2.5 1.45 4.500 1.93 10.558 15.66 11.607 2.17 12.75 1.45 4.500 1.93 10.583 5.66 14.607 2.17 12.75 1.45 4.510 1.57 10.137 7.60 17.00 2.17 12.75 1.45 4.510 1.59 10.583 5.66 14.607 2.17 12.75 1.45 4.500 1.93 10.790 5.56 16.507 2.17 12.75 1.45 5.000 1.93 11.007 7.56 17.00 2.17 12.75 1.45 5.000 1.93 11.007 7.56 17.017 2.17 12.75 1.45 5.000 1.93 11.007 7.60 17.00 2.17 12.17 1.45 5.000 1.93 11.007 7.60 17.00 2.17 12.17 1.45 5.000 1.93 11.007 7.60 17.00 2.17 12.17 1.45 5.000 1.93 11.007 7.60 17.00 2.17 12.15 1.45 5.000 1.93 11.007 7.60 17.00 2.17 12.15 1.45 5.000 1.93 11.100 7.60 17.00 2.17 12.15 1.45 5.000 1.93 11.100 7.60 17.00 2.17 12.15 1.45 5.000 1.93 11.100 7.60 17.00 2.17 12.15 1.45 5.000 1.93 11.100 7.60 17.00 2.17 12.50 1.45 5.000 1.93 11.100 7.60 11.700 2.17 12.52 1.45 5.000 1.93 11.100 7.58 11.600 2.17 12.400 1.45 5.000 1.93 11.100 7.58 11.600 2.17 12.400 1.45 5.000 1.93 11.100 7.58 11.600 2.17 12.400 1.45 5.001 1.91 11.500 1.58 17.500 2.17 12.52 1.45 5.000 1.91 11.83 35.78 17.91 12.17 1.400 1.45 5.000 1.91 11.83 35.78 11.000 2.17 12.400 1.45 5.01 1.91 11.500 3.57 11.8000 2.17 12.400 1.45 5.01 1.91 11.800 3.57 11.8000 2.17 12.400 1.45 5.01 1.91 11.500 3.57 11.8000 2.17 12.400 1.45 5.01 1.91 11.500 3.57 11.8000 2.17 12.400 1.45 5.01 1.91 12.000 3.57 11.8000 2.17 12.400 1.45 5.01 1.91 12.000 3.57 11.8000 2.17 12.400 1.45 5.01 1.91 12.000 3.57 11.8000 2.17 12.400 1.45 5.02 1.92 1
Index (gr. 2).411 Index (gr. 2).411 <t< td=""><td><pre>Hinterion (w/m) = 0.0000 A&A (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.</pre></td><td> TRANSFORED HVETOGRAPH TIPH BAD TIPE BAD TIPE BAD Piera BAD TIPE BAD TIPE BAD TIPE BAD Piera BAD BAD TIPE BAD TIPE BAD TIPE BAD 0.167 0.06 6.250 1.98 12.333 17.41 18.432 2.17 0.333 1.33 6.47 2.17 12.360 17.53 18.50 2.17 0.503 1.33 6.667 2.17 12.367 7.53 18.53 2.17 0.503 1.33 6.667 2.17 12.367 8.94 12.7 2.77 0.570 1.33 6.683 2.17 12.457 8.94 12.57 2.17 0.571 1.33 7.083 2.17 13.35 8.44 12.75 2.17 0.571 1.33 7.083 2.17 13.33 8.43 13.7</td></t<>	<pre>Hinterion (w/m) = 0.0000 A&A (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) AAA (0.0) (0.</pre>	TRANSFORED HVETOGRAPH TIPH BAD TIPE BAD TIPE BAD Piera BAD TIPE BAD TIPE BAD TIPE BAD Piera BAD BAD TIPE BAD TIPE BAD TIPE BAD 0.167 0.06 6.250 1.98 12.333 17.41 18.432 2.17 0.333 1.33 6.47 2.17 12.360 17.53 18.50 2.17 0.503 1.33 6.667 2.17 12.367 7.53 18.53 2.17 0.503 1.33 6.667 2.17 12.367 8.94 12.7 2.77 0.570 1.33 6.683 2.17 12.457 8.94 12.57 2.17 0.571 1.33 7.083 2.17 13.35 8.44 12.75 2.17 0.571 1.33 7.083 2.17 13.33 8.43 13.7



$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Instruct MAS TRANSFORMED 10 S. 0 MUM. TIPE MUM. MUM. TIPE	3.730 1.72 9.833 4.78 15.917 3.98 12.200 1.59 3.813 1.72 19.917 4.78 16.600 3.98 12.21 1.59 3.607 1.73 10.000 4.78 16.177 3.98 12.23 1.59 4.000 1.71 10.000 4.78 16.177 3.98 12.23 1.59 4.107 1.11 10.333 6.11 16.417 2.39 12.24 1.59 4.137 11.038 6.11 16.417 2.39 12.24 1.59 4.137 11.0380 6.11 16.438 2.39 12.47 1.59 4.407 2.11 10.580 6.11 16.433 2.39 12.47 1.59 4.583 1.21 10.670 6.11 16.533 2.39 1.242 1.59 4.597 2.21 11.038 8.21 7.137 2.39 1.35 1.59 5.007 2.21 11.168 8.21 7.137 2.39 1.35 1.59 5.007 2
DUMYO (0311) Intel (20: 2.048] (111455) 1 MFAA (054K) FFAK R.V. (1014 H7G.(10: 11142.1) 5.4.3 (2.5. 115.4.4 (1014 H7G.(10: 11142.1) 5.4.3 (2.5. 115.4.4 (1014 H7G.(10: 11142.1) 5.4.3 (2.5. 113.4.4 (1015 SSG.(10: 3); 12.7 2.5 11.2.4 115.3.4 (1015 SSG.(1015 S); 12.7 2.5 11.2.4 115.3.4 (1015 SSG.(1015 S); 12.7 2.5 11.5.4 (1015 SSG.(1015 S); 12.7 11.5 10.5 11.5 (1015 SSG.(1015 S)) (1015 SSG.(1015 S); 12.7 11.5 (1015 SSG.(1015 S)) (1015 SSG.(1015 S); 12.7 11.5 (1015 SSG.(1015 S)) (1015 SSG.(1015 SSG.(1015 S)); 12.7 11.5 (1015 SSG.(1015 SGG.(1015 S)) (1015 SSG.(1015 SGG.(1015	<pre>Historica (w/h) = 0.0000 A&A QFA TOTAL (V/s) (w/s) (w/s) (W/s) (w/s) (w/s) (W/s) (w/s) (w/s) (W/s) (w/s) (w/s) (W/s) (w/s) (w/s) (W/s) (w/s) (w/s) (w/s) (W/s) (w/s) (w/s) (w/s) (W/s) (w/s) (w/s) (w/s) (w/s) (W/s) (w/s) (w/s) (w/s) (w/s) (w/s) (W/s) (w/s) pre>	THARSFORMED HYTIOGRAPH THE RAIH THS RAID THE RAID THE RAIH PG RAID THE RAID THE RAIH THE RAIH 9 G.S. RAID THE RAIH THE RAIH 9 G.S. R.G. R.S. R.S.

APPENDIX E

SWM Facility Calculations

By:

Water Quality RequirementsProject #:1060-6220Project:Glenelg Expansion LandsDate:2022.08.22 KS

Water Quality Requirements for Wet Pond

Area (ha)	% Imp	25mm RV (mm)	25mm RV (m ³)
14.21	71.0		0
4.05	60.0		0
1.43	50.0		0
0.59	66.0		0
1.28	70.0		0
21.55	67.3	15.54	3350
			219
			219 40
			862
			179
			3852
			3350
			3852
			3368
			3990
	4.05 1.43 0.59 1.28	4.0560.01.4350.00.5966.01.2870.0	4.0560.01.4350.00.5966.01.2870.0

Project: Glenelg Expansion Lands Project No.: 1060-6220 File: SWMF Calculations Design by: KS Date: 2022.08.22

Extended Detention Volume (Area x runoff from 25 mm storm event) 3350 t (drawdown time - seconds, hours in italics) 86400 24.0 Ao (cross section area of orifice - sqm) 0.0314 h (maximum water elevation above orifice for extended detention-m) 0.83 C (discharge coefficient) 0.64 Ap (average surface area for extended detention - sqm) 4415 t = 2*Ap*(h^0.5)/(C*Ao*(g*2)^0.5) Ao = 0.03284676 sqm d = 205 mm Extended Detention Orifice Diameter (as designed) 200 d = mm

EXTENDED DETENTION SPECIFICATIONS - SWM FACILITY (PER MECP)

Project: Project No.: File: Design by: Date: Glenelg Expansion Lands 1060-6220 SWMF Calculations K, Swain 2022.08.22

					:	SW STAGE STORA	MF GE DISCHA	ARGE			
				Outlet	Structure		1				
		E.D. Orifice I E.D. Orifice I V-notch ang V-notch cor V-notch inv Rect weir Ie Rect weir in Extended D	Invert Ele gle nstant ert ngth vert	er: evation:	0.200 518.20 0 0.00 0.00 0.31 519.03 0.83	m m degrees const m m m m					
		Pond Dimer	nsions			Outlet Structure		Cell S	oillway		
	Elev.	Depth Above PP	Area	Storage Volume	ED Orifice Discharge	V-notch Discharge	Rect. Weir Discharge	Emerg. Weir Ave. Width	Emerg. Weir Discharge	Total Discharge	Storage
	(m)	(m)	(sqm)	(cu.m)	(cu.m/s)	(cu.m/s)	(cu.m/s)	(m)	(cu.m/s)	(cu.m/s)	(ha-m)
PP	518.20	0.00	3460	0	0.000	0.000	0.000	0.00	0.000	0.000	0.000
	518.30	0.10	3697	358	0.000	0.000	0.000	0.00	0.000	0.000	0.036
	518.40	0.20	3934	739	0.028	0.000	0.000	0.00	0.000	0.028	0.074
	518.50	0.30	4171	1145	0.040	0.000	0.000	0.00	0.000	0.040	0.114
	518.60	0.40	4407	1573	0.049	0.000	0.000	0.00	0.000	0.049	0.157
	518.70	0.50	4644	2026	0.056	0.000	0.000	0.00	0.000	0.056	0.203
	518.80	0.60	4881	2502	0.063	0.000	0.000	0.00	0.000	0.063	0.250
	518.90	0.70	5118	3002	0.069	0.000	0.000	0.00	0.000	0.069	0.300
Ð	519.03	0.83	5426	3688	0.076	0.000	0.000	0.00	0.000	0.076	0.369
	519.10	0.90	5560	4072	0.080	0.000	0.011	0.00	0.000	0.090	0.407
	519.20	1.00	5751	4638	0.084	0.000	0.040	0.00	0.000	0.124	0.464
	519.30	1.10	5942	5222	0.089	0.000	0.080	0.00	0.000	0.169	0.522
	519.40	1.20	6134	5826	0.093	0.000	0.128	0.00	0.000	0.222	0.583
	519.50	1.30	6325	6449	0.098	0.000	0.184	0.00	0.000	0.281	0.645
	519.60	1.40	6516	7091	0.102	0.000	0.245	0.00	0.000	0.347	0.709
	519.70	1.50	6707	7752	0.105	0.000	0.313	0.00	0.000	0.418	0.775
	519.80	1.60	6899	8433	0.109	0.000	0.385	0.00	0.000	0.494	0.843
	519.90	1.70	7090	9132	0.113	0.000	0.463	0.00	0.000	0.576	0.913
	520.00	1.80	7281	9851	0.116	0.000	0.545	0.00	0.000	0.661	0.985
	520.10	1.90	7473	10588	0.119	0.000	0.631	0.00	0.000	0.751	1.059
	520.20	2.00	7664	11345	0.123	0.000	0.722	0.00	0.000	0.845	1.135
	520.30	2.10	7855	12121	0.126	0.000	0.816	0.00	0.000	0.942	1.212
	520.40	2.20	8046	12916	0.129	0.000	0.915	0.00	0.000	1.044	1.292
00-YR HWL	520.45	2.25	8142	13321	0.131	0.000	0.965	0.00	0.000	1.096	1.332
	520.55	2.35	8353	14146	0.134	0.000	1.069	0.00	0.000	1.203	1.415
	520.65	2.45	8563	14992	0.137	0.000	1.176	0.00	0.000	1.313	1.499
TOP	520.75	2.55	8774	15858	0.139	0.000	1.287	0.00	0.000	1.426	1.586

Project No: Project: File: Design by: Date: 1060-6220 Glenelg Expansion Lands Forebay Design K. Swain 2022-08-26

Forebay Design Calculations

	DESIGN BOTTOM WIDTH (m)	6.5
	DESIGN FOREBAY LENGTH (m)	50.0
	Minimum Forebay Bottom Width (m)	6.25
Forebay Bottom Width		
	Length of forebay (m)	50.0
	Velocity in Forebay (m/s)*	0.32
Check	10 Year Event Flowrate (m ³ /s)	5.10
Velocity in Forebay	Cross sectional area (m ²)	16.2
	Depth of forebay in 10 year event (m) **	1.70
	Length of Dispersion (m)	43
	,	
Dispersion Length	Desired velocity in the forebay (m/s)	0.5
	Depth of of the permanent pool in the forebay (m)	1.58
	Inlet flowrate in 5 year event (m ³ /s)	4.228
	Required Forebay Length (m)	44
	Settling velocity (m/s)	0.0003
	Peak flow rate from forebay in quality event (m³/s)	0.076
orebay Settling Length	Length-to-width ratio of forebay	7.7
	Average Width of forebay (m)	6.5
	Length of forebay (m)	50.0
	Variable	Value

* Desired maximum average velocity in the forebay is 0.15 m/s, per MOE 2003, Page 4-56

APPENDIX F

Water Balance Calculations

Project Name: Glenelg Expansion Lands Project No: 1060-6220 Modelled By: KS Checked By: AW Date: 4-Aug-2022

Water Budget - Pre-Development Project Name: Glenelg Expansion Lands Water Balance/Water Budget Assessment

Pre-development area available for infiltration (landscaped/lawn area considered to infiltrate) Pre-development area not available for infiltration (total site area less landscaped area noted above) Remaining Impervious area (e.g. parking asphalt area)

Note: site land use areas consistent with Pre-Development SWM hydrologic modeling & calculations

			Site			Glenelg Phase 2 Lands	
Catchment Designation	Pervious Area to CP Trail	Pervious Area to North Tile Drain	Pervious Area to South Residential	Pervious Area to Southeast Tile Drain	Pervious Area to East Tile Drain	Pervious Area from Glenelg Phase 2 Lands - External	Totals
Area (m²)	43200	133300	30000	22900	30500	7800	267700
Pervious Area (m ²)	43200	133300	30000	22900	30500	7800	267700
Impervious Area (m ²)	0	0	0	0	0	0	0
			Infiltration Factors				
Topography Infiltration Factor	0.25	0.25	0.25	0.25	0.25	0.25	
Soil Infiltration Factor	0.2	0.2	0.2	0.2	0.2	0.2	
Land Cover Infiltration Factor	0.1	0.1	0.1	0.1	0.1	0.1	
MOE Infiltration Factor	0.55	0.55	0.55	0.55	0.55	0.55	
Actual Infiltration Factor	0.55	0.55	0.55	0.55	0.55	0.55	
Run-off Coefficient	0.25	0.25	0.25	0.25	0.25	0.25	
Runoff from Impervious Surfaces *	0	0	0	0	0	0	
		h	nputs (per Unit Area)			
Precipitation (mm/yr)	1106	1106	1106	1106	1106	1106	1106
Run-On (mm/yr)	0	0	0	0	0	0	0
Other Inputs (mm/yr)	0	0	0	0	0	0	0
Total Inputs (mm/yr)	1106	1106	1106	1106	1106	1106	1106
			utputs (per Unit Are				
Precipitation Surplus (mm/yr)	573	573	573	573	573	573	573
Net Surplus (mm/yr)	573	573	573	573	573	573	573
Evapotranspiration (mm/yr) *	533	533	533	533	533	533	533
Infiltration (mm/yr)	315	315	315	315	315	315	315
Topsoil Amendment Infiltration(mmyr)	0	0	0	0	0	0	0
Bioretention Infiltration(mmyr)	0	0	0	0	0	0	0
Tree Pit Infiltration(mm/yr)	0	0	0	0	0	0	0
Permeable Paver Infiltration - Park (mm/yr)	0	0	0	0	0	0	0
Permeable Paver Infiltration - North (mm/yr) Total Infiltration (mm/yr)	0 315	0 315	0 315	0 315	0 315	0 315	0 315
Runoff Pervious Areas (mm/yr)	258	258	258	258	258	258	258
Runoff Impervious Areas (mm/yr)	0	236	0	236	236	236	230
Total Runoff (mm/yr)	258	258	258	258	258	258	258
Total Outputs (mm/yr)	1106	1106	1106	1106	1106	1106	1106
Difference (Inputs- Outputs)	0	0	0	0	0	0	0
billerence (inpois- colpois)	i v	Ū	Inputs (Volumes)	•	•	•	Ŭ
Precipitation (m ³ /yr)	47788	147456	33186	25332	33739	8628	296130
Run-On (m ³ /yr)	47788	0	0	0	0	0	278130
Other Inputs (m ³ /yr)	0	0	0	0	0	0	0
Total Inputs (m³/yr)	47788	147456	33186	25332	33739	8628	296130
			Outputs (Volumes)				
D. 1. 1. 1. 1. 3. 1.	0.777	74.000	,	10100	17.005	1.130	1.50 (30
Precipitation Surplus (m ³ /yr)	24766	76420	17199	13128	17485	4472	153470
Net Surplus (m ³ /yr)	24766	76420	17199 17199	13128	17485	4472	153470
Net Surplus (m³/yr) Evapotranspiration (m³/yr) *	24766 23022	76420 71037	17199 17199 15987	13128 12204	17485 16254	4472 4157	153470 142660
Net Surplus (m ³ /yr) Evapotranspiration (m ³ /yr) * Infiltration (m ³ /yr)	24766 23022 13621	76420 71037 42031	17199 17199 15987 9459	13128 12204 7221	17485 16254 9617	4472 4157 2459	153470 142660 84408
Net Surplus (m³/yr) Evapotranspiration (m³/yr) * Infiltration (m³/yr) Topsoil Amendment Infiltration(mmyr)	24766 23022 13621 0	76420 71037 42031 0	17199 17199 15987 9459 0	13128 12204 7221 0	17485 16254 9617 0	4472 4157 2459 0	153470 142660 84408 0
Net Surplus (m ³ /yr) Evapotranspiration (m ³ /yr) * Infiltration (m ³ /yr) Topsoil Amendment Infiltration(mmyr) Bioretention Infiltration(m ³ /yr)	24766 23022 13621 0 0	76420 71037 42031 0 0	17199 17199 15987 9459 0 0	13128 12204 7221 0 0	17485 16254 9617 0 0	4472 4157 2459 0 0	153470 142660 84408 0 0
Net Surplus (m ² /yr) Evopotranspiration (m ² /yr) * infiltration (m ³ /yr) Topsoil Amendment Infiltration(mmy) Bioretention Infiltration(m ³ /yr) Tiee Pit Infiltration(m ³ /yr)	24766 23022 13621 0 0 0	76420 71037 42031 0 0 0	17199 17199 15987 9459 0 0 0	13128 12204 7221 0 0 0	17485 16254 9617 0 0 0	4472 4157 2459 0 0 0	153470 142660 84408 0 0 0
Net Surplus (m ³ /yr) Evapotranspiration (m ³ /yr) * Infiltration (m ³ /yr) Topsoil Amendment Infiltration(mmyr) Bioretention Infiltration(m ³ /yr) Tree Pit Infiltration(m ³ /yr) Permeable Paver Infiltration - Park (m ³ /yr)	24766 23022 13621 0 0 0 0	76420 71037 42031 0 0 0 0	17199 17199 15987 9459 0 0 0 0	13128 12204 7221 0 0 0 0	17485 16254 9617 0 0 0 0	4472 4157 2459 0 0 0 0	153470 142660 84408 0 0 0 0
Net Surplus (m ³ /yr) Evapotranspiration (m ³ /yr) * Infiltration (m ³ /yr) Bioretention Infiltration(mmyr) Bioretention Infiltration(m ³ /yr) Tree Pit Infiltration(m ³ /yr) Permeable Paver Infiltration - Park (m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr)	24766 23022 13621 0 0 0 0 0 0	76420 71037 42031 0 0 0 0 0	17199 17199 15987 9459 0 0 0 0 0 0	13128 12204 7221 0 0 0 0 0 0	17485 16254 9617 0 0 0 0 0 0	4472 4157 2459 0 0 0 0 0 0 0	153470 142660 84408 0 0 0 0 0
Net Surplus (m ³ /yr) Evapotranspiration (m ³ /yr) * infiltration (m ³ /yr) Topsoi Amendment Infiltration(mmyr) Biaretention Infiltration(m ³ /yr) Tree Pit Infiltration(m ³ /yr) Permeable Paver Infiltration - Park (m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr) Total Infiltration (m ³ /yr)	24766 23022 13621 0 0 0 0 0 0 13621	76420 71037 42031 0 0 0 0 0 42031	17199 17199 15987 9459 0 0 0 0 0 9459	13128 12204 7221 0 0 0 0 0 0 7221	17485 16254 9617 0 0 0 0 0 0 9617	4472 4157 2459 0 0 0 0 0 2459	153470 142660 84408 0 0 0 0 0 0 84408
Net Surplus (m ³ /yr) Evapotranspiration (m ³ /yr) * Infiltration (m ³ /yr) Topsoil Amendment Infiltration(mmyr) Bioretention Infiltration(m ³ /yr) Tree Pit Infiltration(m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr) Iotal Infiltration (m ³ /yr) Iotal Infiltration (m ³ /yr)	24766 23022 13621 0 0 0 0 0 13621 11145	76420 71037 42031 0 0 0 0 42031 34389	17199 17199 15887 9459 0 0 0 0 0 9459 7739	13128 12204 7221 0 0 0 0 0 7221 5908	17485 16254 9617 0 0 0 0 9617 7868	4472 4157 2459 0 0 0 0 0 2459 2012	153470 142660 84408 0 0 0 0 0 84408 69061
Net Surplus (m ² /yr) Evopotranspiration (m ² /yr) * (nifiltation (m ² /yr) Topsal Amendment Infiltation(mmyr) Bioretention Infiltation(m ³ /yr) Tee Pit Infiltation(m ³ /yr) Permeable Paver Infiltation - North (m ³ /yr) Permeable Paver Infiltation - North (m ³ /yr) Total Infiltation (m ³ /yr) Runoff Pervious Areas (m ³ /yr) Runoff Pervious Areas (m ³ /yr)	24766 23022 0 0 0 0 0 13621 11145 0	76420 71037 42031 0 0 0 0 42031 34389 0	17199 17199 15987 9459 0 0 0 0 0 0 9459 7739 0	13128 12204 7221 0 0 0 0 0 7221 5908 0	17485 16254 9617 0 0 0 0 0 9617 7868 0	4472 4157 2459 0 0 0 0 0 2459 2012 0	153470 142660 84408 0 0 0 0 0 84408 699061 0
Net Surplus (m ³ /yr) Evapotranspiration (m ³ /yr) * Infiltration (m ³ /yr) Topsoil Amendment Infiltration(mmyr) Bioretention Infiltration(m ³ /yr) Tree Pit Infiltration(m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr) Iotal Infiltration (m ³ /yr) Iotal Infiltration (m ³ /yr)	24766 23022 13621 0 0 0 0 0 13621 11145	76420 71037 42031 0 0 0 0 42031 34389	17199 17199 15887 9459 0 0 0 0 0 9459 7739	13128 12204 7221 0 0 0 0 0 7221 5908	17485 16254 9617 0 0 0 0 9617 7868	4472 4157 2459 0 0 0 0 0 2459 2012	153470 142660 84408 0 0 0 0 0 84408 69061
Net Surplus (m ² /yr) Evapotranspiration (m ³ /yr) * infiltration (m ³ /yr) Topsoil Amendment Infiltration(mmyr) Bioretention Infiltration(m ³ /yr) Tree Pit Infiltration(m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr) Total Infiltration (m ³ /yr) Runoff Pervious Areas (m ³ /yr) Runoff Pervious Areas (m ³ /yr)	24766 23022 0 0 0 0 0 13621 11145 0	76420 71037 42031 0 0 0 0 42031 34389 0	17199 17199 15987 9459 0 0 0 0 0 0 9459 7739 0	13128 12204 7221 0 0 0 0 0 7221 5908 0	17485 16254 9617 0 0 0 0 0 9617 7868 0	4472 4157 2459 0 0 0 0 0 2459 2012 0	153470 142660 84408 0 0 0 0 0 84408 699061 0

NOTES: * Evaporation from impervious areas was assumed to be 20% of precipitation.

Project Name: Glenelg Expansion Lands Project No: 1060-6220 Modelled By: KS Checked By: AW Date: 4-Aug-2022

Water Budget - Post-Development <u>Without Mitigation</u> Project Name: Glenelg Expansion Lands Water Balance/Water Budget Assessment

Post-development area available for infiltration (landscaped/lawn area considered to infiltrate) Post-development area not available for infiltration (total site area less landscaped area noted above) Remaining Impervious area (e.g. parking asphalt area, building/rooftop area)

Note: site land use areas consistent with Post-Development SWM hydrologic modeling & calculations

Catchment Designation		Site		Gleneig Pr	nase 2 Lands		1
Calcriment Designation	Pervious Area	Impervious Block Area	Impervious Road Area	Pervious Area	Impervious Area	Totals	1
vrea (m²)	99378	100744	59778	6318	1482	267700	7
Pervious Area (m²)	99378	0	0	6318	0	105696	
Impervious Area (m ²)	0	100744	59778	0	1482	162004	
mpornoos, roa (m)			ration Factors		1402	102004	1
Topography Infiltration Factor	0.25	0	0	0.25	0	1	1
Soil Infiltration Factor	0.2	0	0	0.2	0		
and Cover Infiltration Factor	0.1	0	0	0.1	0		
MOE Infiltration Factor	0.55	0	0	0.55	0	-	
Actual Infiltration Factor	0.55	0	0	0.55	0	-	
Run-off Coefficient	0.25	i	1	0.25	1		
Runoff from Impervious Surfaces *	0	0.8	0.8	0	0.8		
	-	Inputs	(per Unit Area)				-
Precipitation (mm/yr)	1106	1106	1106	1106	1106	1106	7
Run-On (mm/yr)	0	0	0	0	0	0	
Other Inputs (mm/yr)	0	0	0	0	0	0	
otal Inputs (mm/yr)	1106	1106	1106	1106	1106	1106	1
	-	Output	s (per Unit Area)				1
Precipitation Surplus (mm/yr)	573	885	885	573	885	760	1
Net Surplus (mm/yr)	573	885	885	573	885	760	
Evapotranspiration (mm/yr) *	533	221	221	533	221	346	
nfiltration (mm/yr)	315	0	0	315	0	126	
Topsoil Amendment Infiltration(mmyr)	0	0	0	0	0	0	
Bioretention Infiltration(mmyr)	0	0	0	0	0	0	
free Pit Infiltration(mm/yr)	0	0	0	0	0	0	
Permeable Paver Infiltration - Park (mm/yr)	0	0	0	0	0	0	
Permeable Paver Infiltration - North (mm/yr)	0	0	0	0	0	0	
fotal Infiltration (mm/yr)	315	0	0	315	0	126	
Runoff Pervious Areas (mm/yr)	258	0	0	258	0	103	
Runoff Impervious Areas (mm/yr)	0	885	885	0	885	531	
Total Runoff (mm/yr)	258	885	885	258	885	634	
Total Outputs (mm/yr)	1106	1106	1106	1106	1106	1106	
Difference (Inputs- Outputs)	0	0	0	0	0	0	4
9	1		rts (Volumes)				4
Precipitation (m³/yr)	109932	111443	66126	6989	1639	296130	
Run-On (m ³ /yr)	0	0	0	0	0	0	
Other Inputs (m³/yr)	0	0	0	0	0	0	_
Total Inputs (m³/yr)	109932	111443	66126	6989	1639	296130	
			uts (Volumes)				-
recipitation Surplus (m ³ /yr)	56972	89154	52901	3622	1312	203961	1
vet Surplus (m³/yr)	56972	89154	52901	3622	1312	203961	1
Evapotranspiration (m ³ /yr) *	52960	22289	13225	3367	328	92168	1
nfiltration (m ³ /yr)	31335	0	0	1992	0	33327	1
Topsoil Amendment Infiltration (m ³ /yr)	0	0	0	0	0	0	1
Bioretention Infiltration(m ³ /yr)	ō	0	0	0	0	0	1
	ő	o	0	0	ő	ő	Pre-Development Total Infiltration
free Pit Infiltration/m ³ /vr)	0	0	0	0	0	0	- to boycopheni totarifililialio
free Pit Infiltration(m ³ /yr)		0			0		1
Permeable Paver Infiltration - Park(m ³ /yr)			0	0	-	0	1 1.
Permeable Paver Infiltration - Park(m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr)	0	-		1992	0	33327	84408 m ³ /yr
Permeable Paver Infiltration - Park(m³/yr) Permeable Paver Infiltration - North (m³/yr) otal Infiltration (m³/yr)	0 31335	0	0				
Permeable Paver Infiltration - Park(m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr) Total Infiltration (m ³ /yr) Runoff Pervious Areas (m ³ /yr)	0 31335 25638	0	0	1630	0	27268	
tiree Pit Infiltration(m ³ /yr) Permeable Paver Infiltration - Park(m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr) fotal Infiltration (m ³ /yr) Runoff Pervious Areas (m ³ /yr) Runoff Inpervious Areas (m ³ /yr)	0 31335	0			0 1312	27268 143367	
Permeable Paver Infiltration - Park(m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr) Total Infiltration (m ³ /yr) Runoff Pervious Areas (m ³ /yr)	0 31335 25638	0	0	1630			
Permeable Paver Infiltration - Park(m ³ /yr) Permeable Paver Infiltration - North (m ³ /yr) fotal Infiltration (m ³ /yr) Runoff Pervious Areas (m ³ /yr) Runoff Impervious Areas (m ³ /yr)	0 31335 25638 0	0 0 89154	0 52901	1630 0	1312	143367	=

													Project Name	Glenela Ex	ent <u>with Mitigatio</u> pansion Lands	1										Checked by: AW Date: 4-Auc
													Water Balance	e/Water Budg	et Assessment											
Prot-riscalormant man numlinhia																										
Protoriavalorment men not munic	n him Irlans fund	in infilm to United sites a	an instimation de refere	marti																						
													Site - Post-Develop													
Catchment Designation	Pervious A	impervious Ar		ing to CP Ital	Tervious Area	Impervious Areo		Draining to South Impervious Area		Pervious Area	Impervious Area	Persions Area		to East Tile Drain		Pervious Area				Draining to North Tile	UIGIN					
	Draining Uncontrolle CP Trol	Draining d to Uncontrolled to	Impervious	Pite Pervicus Area Notarty to Tre Pite		Draining from 18-1	Pervious Area Draining Uncontrolled to Southeast Tile Drain	Draining Uncontrolled to Southeast Tile Drain	Impervious Area Dealning Controlled to SE Tile Dealn	Draining Controlled to SE Tile Drain	Draining Uncontrolled to East Tile Drain	Droining Uncontrolled to East Tile Drain	Impervious Draining to Tree Pits	Pervious Area Tributarty to Tree Pits	Impervious Draining to Bioretection and Permeable Pavers	Tributarly to Bioretention and Permeable Payers	Impervious Area Draining to Permeable Pavers (N Walkway)	Pervious Area Draining to Permeable Pavers (N Walkway)	Impervious Area Tributory to North Tile Drain	Pervious Area Islautarty to North Tile Drain	Impervious Draining to Tree Fils	Tributarly to Tree	Impervious SWM Fond Block Tributory to North Tile Drain	North Tile Droin	Totals	
m ² i ua Ama (m ²) viou Ama (m ²)	2250 2250		0	3989	4318 4318	1452	2615 2615	3196 0 3196	2796 0	2288 2288	2159	992 992	5422 0	3012 3012	3484	13153	3912 0	200 200	24041	16405	96565	45510 45510	7145	7145 7145	267700 105696 162004	
	0.25			0.25	025	1964	0.25	3174	276	0.25	1.57	Infiltration Factors		0.25				0.25	200	0.25	- AGAD		7165	025	10004	
raphy infiltration Factor Itration Factor Dover Infiltration Factor	0.2	0	0	0.25 0.2 0.1	0.2	0	0.2	0 0 0	0	0.2	0	0.2	000	0.2	000	0.25	0	0.2	0	0.2	0	0.25 0.2 0.1	0	0.2		
nfitration Factor	0.55	0	0	0.55	0.55	0	0.55	0	0	0.55	0	0.55	0	0.55	0	0.55	0	0.55	0	0.55	0	0.55	0	0.55		
f Coefficient from Impervious Surfaces *	0.25	1.00	1.00	0.25	0.25	1.00	0.25	1.00	1.00	0.25	1.00	0.25 puts (per Unit Area)	1.00	0.25	1.00	0.25	1.00	0.25	1.00	0.25	1.00 0.8	0.25	1.00	0.25		
itatian (mm/ut) n (mm/ut)	1104	1154	0	1154	1954	1156	11/54	0	0	1154	1104	1104	0	1154	0	1154	1156	11/2	1104	0	1104	1154	1154	1104	0	
n (mm/st) Inputs (mm/st) spats (mm/st)	0	0	0 1106	1106	0	0	0 1106	0	0 1106	0	0 1105	1106	0 1106	0 1106	1106	0	0	0 1104	0 1106	0 1104	1106	1106	1104	1106	0	
itation Surplus (mm/w)	573	885	585	573	5/3	885	573	885	885	573	885	Aputs (per Unit Area)	885	573	885	573	885	573	85	573	885	573	885	573	729	
roks (mm/st) transpitation (mm/st) * tion (mm/st)	573 533 315	885 221 0	885 221 0	573 533 315	573 533 315	885 221 0	573 533 315	885 221 0	885 221 0	573 533 315	885 221 0	573 533 315	885 221 0	573 533 315	885 221 0	573 533 315	885 221 0	573 533 315	885 221 0	573 533 315	885 221 0	573 533 315	885 221 0	573 533 315	729 377 158	Proposed Infiltration via Mitigation
i Amendment Infitration(mm/y) ention Infitration(mm/y) E Infitration(mm/y) oble Poyer Infitration - Park [mm/y]	0 0	0000	0 0 75	64 0 75	0	0000	64 0	000	000	3 0		4 0 0	0 0 75	44 0 75	0 300 0	44 95 0	0	4 0 0	0000	0 0	24	64 0 74	0	64 0	30 14	coment Total Interations
able Paver Infiltration - North (mm/yr) Infiltration (mm/yr)	0	0	0	455	315	0	0	0	0	0 380	0	380	0 75	455	0	0 545	500 500	180 560	0	0 380	0 74	474	0	0		15 mm/r
Pervisus Areas (mm/yr) Impervisus Areas (mm/yr) tunoff (mm/yr)			810	118 0	248 0		101 0	0 M5		191		19%	810	0	115	28 0	345	13	0 865	1975 0	791	99 0	0 2015	193 0	71 180	Note:
lutputs (mm/yr)	1104		1106	1106	1104	1106	1106	1106	1106	1106	1105	1104	1104	1104	1104	1106	1106	1104	1104	1106	1106	1106	1106	1106	1106	621.7 mm
nce (inputs- Outputs)	•	•	•	0	•	•	•	0	•	0	0	0 Inputs (Volumes)	•	0	0	•	•	•	0	0	0	0			0	Precipitation available between Apr-Oct (non-winter months).
itation (m²/vt) n (m²/vt)	2429	3042	9746 0	4413 0	6509 0	1639	2893	3535	3093	2531 0	2389 0	1097	6219 0	3332	3856	14550	4327	2213 0	26616	18147 0	106820	50343 0	7925	7925	296130 0	Therefore available for infitration into non-frazen sol
inputs (m ³ /yr) spats (m ³ /yt)	2487	0 3042	9746	4413	6787	1627	2073	3535	3093	2531	2387	1097	6217	3332	3856	0	4327	2213	24616	0	104820	50343	7925	7925	276130	
itation Suplus (m ² /y)	1220	2474	2404	2287	3422	1312	1472	2828	2475	1312	1911	Dulpuls (Volumes)	4275	1727	705	7540	34/2	1147	21293	9405	25454	34090	6340	407	108/128	
rplus. (m ³ /yr)	1790	2474	24744	2287	3432	1912	1499	3828	2475	1312	1911	5.02	4075	1727	1005	7540	1440	1147	21295	9405	85454	34790	4340	4107	108458	
drampitation (m²/vd * tion (m²/vd	1100	478	478	2154 1248	NNC7 1997	128	1984	317	4.19	1719	478	479	1344	1405	771	2008 #1.47	845	1544	1121	8747	01964	34245	1985	581.8 7259	95827	
LAmendment Infiltration(m ² /yr)	145	0		947		0	1.69		•	148	•	4		784	•	848	2	179	0	1058		2014	0	447	4400 mm	
ention Infiltration(m ² /yr) It Infiltration(m ² /yr)			374	n 799									400	724	1044	1940		â			9077	4778	0			ormani Totol Infilmition
able Payer infiltration - Park/m ² /yr)															1948	971									CARD	
able Paver infitration - North(m ² /y) offication (m ² /y)	855		0	0	1997	0	0		0	0 840	0	n 377	n 422	0	2415	7144	10%	145		4711	9177	21543	0	0 2721	7814 41745 Rd	478 m3/ar
Pervisus Areas (m ² Ar)	435			475	1490		4746			441		192	0	907	0	125		77		3174		4538		1984	19425	
Impervious Areas (m ² Ar) tunoti (m ² /r)	0	2474	7777		1000	1312	0	2828	2475		1011	100	4953	0	470		1976	0	21203	0	74379	0	4540	0	175738	
lutputs (m ³ /yr)	435	3042	3042	4413	6787	1627	2013	3535	3093	2531	2369	192	4003	3332	3856	14550	4327	2213	26616	10147	106820	50343	7925	7925	207426	
nce (Inputs- Outputs)	0	0	•	0	0	0	0	0	•		0			0	0	0	0	•	•	0	0		0	0	0	
draining to CP Tile Drain decreased by draining to Southeast Tile Drain increa draining to East Tile Drain decreased it draining to North Tile Drain increased it draining to North Tile Drain increased it draining for North Tile Drain increased it drain incr	med by 4% (34 by 0% (10m ³ /y	4m ³ /vrl in Post-Develo rl in Post-Developmen	ment Conditions Conditions																							

Debl22D Glenety Expansion Lands Design Cut, Water 2010 Galaxiese 2022 db 23 Water Balance

Project: Glenelg Expansion Lands Project No: 1060-6220 Modelled By: KS Checked By: AW Date: 4-Aug-2022

Water Budget Summary Project Name: Glenelg Expansion Lands Water Balance/Water Budget Assessment

			Site		
Characteristic	Pre-Development	Post-Development	Post-Development with Mitigation	Change (Pre to Post)	Change (Pre to Post) <u>with Mititgation</u>
		Inputs (Vo	olumes)		
Precipitation (m ³ /yr)	296130	296130	296130	0%	0%
Run-On (m ³ /yr)	0	0	0	0%	0%
Other inputs (m ³ /yr)	0	0	0	0%	0%
Total Inputs (m³/yr)	296130	296130	296130	0	0
		Outputs (V	olumes)		2
Precipitation Surplus (m ³ /yr)	153470	203961	198598	33%	29%
Net Surplus (m³/yr)	153470	203961	198598	33%	29%
Evapotranspiration (m ³ /yr)	142660	92168	90827	-35%	-36%
Infiltration (m ³ /yr)	84408	33327	33327	-61%	-61%
Topsoil Amendment Infiltration (m ³ /yr)	0	0	6409	-	6409 m3/yr
Bioretention Infiltration (m ³ /yr)	0	0	2295	-	2295 m3/yr
Tree Pit Infiltration(m ³ /yr)	0	0	14508	-	14508 m3/yr
Permeable Paver Infiltration - Park (m ³ /yr)	0	0	2489	-	2489 m3/yr
Permeable Paver Infiltration - North (m ³ /yr)	0	0	2316	-	2316 m3/yr
Total Infiltration (m ³ /yr)	84408	33327	61345	-61%	-27%
Runoff Pervious Areas (m ³ /yr)	69061	27268	13525	-61%	-80%
Runoff Impervious Areas (m ³ /yr)	0	143367	123728	-	-
Total Runoff (m ³ /yr)	69061	170634	137253	147%	99%
Total Outputs (m³/yr)	296130	296130	289426	0%	0%

NOTES:

* Total Infiltration into groundwater system (25702m3/yr) is to be maintained via the proposed LIDs.

Months contributing to Water Balance (winter months not considered due to freezing effects) - April, May, June, July, August, September, October = 7 months

Project: Glenelg Expansion Lands Project No: 1060-6220 Modelled By: KS Date: 4-Aug-2022

Design Storm Determination - Permeable Pavers in Park Project Name: Glenelg Expansion Lands Water Balance/Water Budget Assessment

Days with Pr	ecipitation	ı (From Cl	imate Data)					
	Apr	May	Jun	Jul	Aug	Sep	Oct	Total
>= 0.2 mm	14.6	13	12.8	11.9	13.1	15.3	16.9	98
>= 5 mm	4.7	5.6	5.2	4.5	5.2	6.2	6.1	38
>= 10 mm	2.1	2.9	3.2	2.2	3	3.5	2.9	20
>= 25 mm	0.32	0.64	0.86	0.81	0.81	0.86	0.33	5

Available Precipitation

	Storm Event (mm)	Total Days Per Year	Incremental Precipitation (mm/yr)	Cummulative Precipitation (mm/yr)	
	0.2	98	19.5	19.5	
	5	38	187.5	207.0	
	10	20	198.0	405.0	
	25	5	115.8	520.8	
	Total	160	520.8		
Permeable Pav	er Infiltratio	0	150 0.35	mm/yr	
[Design Prec	ipitation:	432	mm/yr	(Design Infiltration / Contributing
Therefore	e Min. Desig	an Storm:	13.44	mm	
Volume o	of Storage F	Required:	223.68	m ³	

J:\1000\1060-Flato Dev\6220- Glenelg Expansion Lands\Design\Civil_Water\SWM Calculations\2022-08-22-Water Balance

Project: Glenelg Expansion Lands Project No: 1060-6220 Modelled By: KS Date: 8-4-2022

Mitigation Sizing - Permeable Pavers in Park Project Name: Glenelg Expansion Lands Water Balance/Water Budget Assessment

Contributing Drainage Area: Runoff Coefficient: Design Storm: Design Runoff/Infiltration Volume: 16639 m² 0.35 13 mm 223.7 m³

Maximum Depth of Cell

$d_{cmax} = i^*(t_s - d_p/i)/V_r$

Where:

d_{c max} = Maximum cell depth (mm)

i = Infiltration rate for native soils (mm/hr)

 $V_{\rm r}$ = Void space ratio for filter bed and gravel storage layer (assume 0.4)

 t_s = Time to drain d_p = Maximum surface ponding depth (mm)

Assumptions

i ¹ =	6 mm/hr
V _r =	0.4
t _s =	48 hr
d _p =	0 mm
d _{c max} =	0.7 m

Area of Permeable Pavers:	800 m ²
Storage Depth:	0.720 m
Drawdown Time:	48 hr
Void Ratio:	0.4
Total Volume Retained:	230.4 m ³

Based on Borehole MW22-313 S

Depth to Groundwater:	1.985 m
Storage Depth:	0.720 m
Clearance from Groundwater:	1.265 m

Therefore, the proposed system will drain within 48 hours and will provide a retention volume that exceeds the volume for mitigation.

Project: Glenelg Expansion Lands Project No: 1060-6220 Modelled By: KS Date: 4-Aug-2022

Design Storm Determination - Permeable Pavers to North Walkway Project Name: Glenelg Expansion Lands Water Balance/Water Budget Assessment

Days with Pr	ecipitation	ı (From Cl	imate Data)					
	Apr	May	Jun	Jul	Aug	Sep	Oct	Total
>= 0.2 mm	14.6	13	12.8	11.9	13.1	15.3	16.9	98
>= 5 mm	4.7	5.6	5.2	4.5	5.2	6.2	6.1	38
>= 10 mm	2.1	2.9	3.2	2.2	3	3.5	2.9	20
>= 25 mm	0.32	0.64	0.86	0.81	0.81	0.86	0.33	5

Available Precipitation

Storm Event (mm)	Total Days Per Year	Incremental Precipitation (mm/yr)	Cummulative Precipitation (mm/yr)	
0.2	98	19.5	19.5	
5	38	187.5	207.0	
10	20	198.0	405.0	
25	5	115.8	520.8	
Total 160		520.8		
ver Infiltration Target: 392 mm/yr				

	392 mm/yr	Permeable Paver Infiltration Target:
	0.66	Runoff Coefficient:
(591 mm/yr	Design Precipitation:
	34.06 mm	Therefore Min. Design Storm:
	201.38 m ³	Volume of Storage Required:

(Design Infiltration / Contributing RC)

Project: Glenelg Expansion Lands Project No: 1060-6220 Modelled By: KS Date: 8-4-2022

Mitigation Sizing - Permeable Pavers to North Wallkway Project Name: Glenelg Expansion Lands Water Balance/Water Budget Assessment

Contributing Drainage Area: Runoff Coefficient: Design Storm: Design Runoff/Infiltration Volume: 5912 m² 0.66 34 mm 201.4 m³

Maximum Depth of Cell

$d_{cmax} = i^*(t_s - d_p/i)/V_r$

Where:

d_{c max} = Maximum cell depth (mm)

i = Infiltration rate for native soils (mm/hr)

 V_r = Void space ratio for filter bed and gravel storage layer (assume 0.4)

 $t_s = Time to drain$

 d_p = Maximum surface ponding depth (mm)

Assumptions

i ¹ =	6 mm/hr
V _r =	0.4
t _s =	48 hr
d _p =	0 mm
d _{c max} =	0.7 m

Area of Permeable Pavers:	700 m ²
Storage Depth:	0.720 m
Drawdown Time:	48 hr
Void Ratio:	0.4
Total Volume Retained:	201.6 m ³

Based on Borehole MW22-313 S

Depth to Groundwater:	1.985 m
Storage Depth:	0.720 m
Clearance from Groundwater:	1.265 m

Therefore, the proposed system will drain within 48 hours and will provide a retention volume that exceeds the volume for mitigation.

Project: Glenelg Expansion Lands Project No: 1060-6220 Modelled By: KS Date: 4-Aug-2022

Design Storm Determination - Bioretention Project Name: Glenelg Expansion Lands Water Balance/Water Budget Assessment

Days with Pr	ecipitation	(From Cl	imate Data)					
	Apr	May	Jun	Jul	Aug	Sep	Oct	Total
>= 0.2 mm	14.6	13	12.8	11.9	13.1	15.3	16.9	98
>= 5 mm	4.7	5.6	5.2	4.5	5.2	6.2	6.1	38
>= 10 mm	2.1	2.9	3.2	2.2	3	3.5	2.9	20
>= 25 mm	0.32	0.64	0.86	0.81	0.81	0.86	0.33	5

Available Precipitation

	Storm Event (mm)	Total Days Per Year	Incremental Precipitation (mm/yr)	Cummulative Precipitation (mm/yr)	
	0.2	98	19.5	19.5	
	5	38	187.5	207.0	
	10	20	198.0	405.0	
	25	5	115.8	520.8	
	Total	160	520.8		
Bioretention Infiltration Target: Runoff Coefficient:		138 0.35	mm/yr		
Design Precipitation:		398 mm/yr		(Design Infiltration / Contributing RC)	
Therefore Min. Design Storm:		9.08	mm		
Volume of Storage Required:		151.13	m ³		

Project: Glenelg Expansion Lands Project No: 1060-6220 Modelled By: KS Date: 8-4-2022

Mitigation Sizing - Bioretention Project Name: Glenelg Expansion Lands Water Balance/Water Budget Assessment

Contributing Drainage Area: Runoff Coefficient: Design Storm: Design Runoff/Infiltration Volume: 16639 m² 0.35 9 mm 151.1 m³

Maximum Depth of Cell

 $d_{cmax} = i^{*}(t_{s}-d_{p}/i)/V_{r}$

Where:

d_{c max} = Maximum cell depth (mm)

i = Infiltration rate for native soils (mm/hr) $V_r = Void space ratio for filter bed and gravel storage layer (assume 0.4)$ $<math>t_s = Time to drain$

 d_p = Maximum surface ponding depth (mm)

Assumptions

i ¹ =	6 mm/hr
V _r =	0.4
t _s =	48 hr
d _p =	0 mm
d _{c max} =	0.7 m

Length of Bioretention:	60 m
Width of Bioretention:	3 m
Number of LIDs:	3
Storage Depth:	0.720 m
Drawdown Time:	48 hr
Total Volume Retained:	155.52 m ³

Based on Borehole MW22-313 S									
Depth to Groundwater:	1.985 m								
Storage Depth:	0.720 m								
Clearance from Groundwater:	1.265 m								

Therefore, the proposed system will drain within 48 hours and will provide a retention volume that exceeds the volume for mitigation.

Project: Glenelg Expansion Lands Project No: 1060-6220 Modelled By: KS Date: 27-Jul-2022

Design Storm Determination - Tree Pits Project Name: Glenelg Expansion Lands Water Balance/Water Budget Assessment

Davs with Precip	itation (From	Climate	Data)

	Apr	May	Jun	Jul	Aug	Sep	Oct	Total		
>= 0.2 mm	14.6	13	12.8	11.9	13.1	15.3	16.9	98		
>= 5 mm	4.7	5.6	5.2	4.5	5.2	6.2	6.1	38		
>= 10 mm	2.1	2.9	3.2	2.2	3	3.5	2.9	20		
>= 25 mm	0.32	0.64	0.86	0.81	0.81	0.86	0.33	5		

Available Precipitation

Storm Event (mm)	Total Days Per Year	Incremental Precipitation (mm/yr)	Cummulative Precipitation (mm/yr)
0.2	98	19.5	19.5
5	38	187.5	207.0
10	20	198.0	405.0
25	5	115.8	520.8
Total	160	520.8	

	96 mm/yr	Tree Pit Infiltration Target:
	0.67	Runoff Coefficient:
(Design Infiltration / Contributing RC)	143 mm/yr	Design Precipitation:
	3.35 mm	Therefore Min. Design Storm:
	505.4 m ³	Volume of Storage Required:

Project: Glenelg Expansion Lands Project No: 1060-6220 Modelled By: KS Date: 7-27-2022

Stormwater Tree Pit Project Name: Glenelg Expansion Lands

Water Balance/Water Budget Assessment

Location	Block Area (Ha)	TIMP	RC	A*RC	A*RC Proration	Required Storage Volume (m ³)	Native Soil Infiltration Rate* (mm/hr)	Safety Factor	Native Soil Infiltration Rate with Safety Factor (mm/hr)	Void Space of Sand Layer	Void Space Ratio of Gravel Layer	Depth of Sand Layer (m)	Depth of Gravel Layer (m)	Actual Length of Bioretention Cell (m)	Actual Width of the Biretention Cell (m)		Drawdown	Total Retention Storage Provided per LID (m ³)	# of LIDs	Total Retention Storage Provided (m ³)
Tree Pits - CP Rail	1.280	69%	0.68	0.87	8%	40	12	2.0	6.00	0.20	0.40	0.10	0.67	2	2	4	48.00	1.152	29	33.41
Tree Pits - East Tile Drain	0.863	65%	0.66	0.57	5%	26	12	2.0	6.00	0.20	0.40	0.10	0.67	2	2	4	48.00	1.152	20	23.04
Tree Pits - North Tile Drain	14.208	68%	0.68	9.60	87%	505	12	2.0	6.00	0.20	0.40	0.10	0.67	2	2	4	48.00	1.152	390	449.28

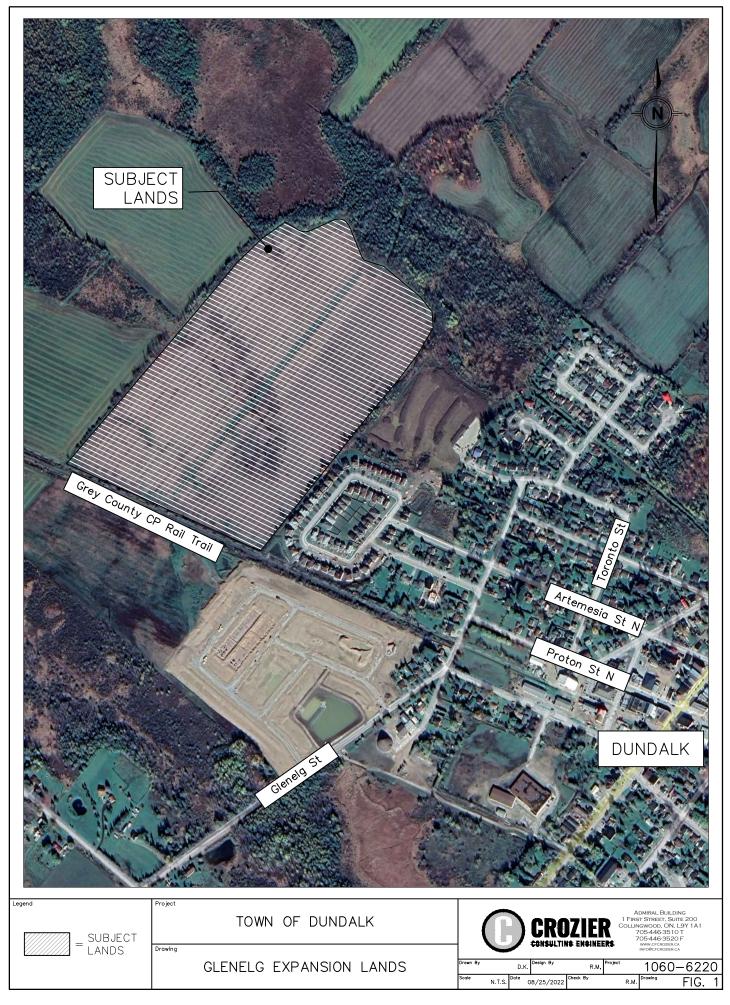
Notes: *Soil infiltration rate estimated as minimum 12mm/hr for infiltration LID's as per MOE 2003 Design Guidelines.

**Tree Species used shall be salt resistant species (i.e. Honey Locust, American Elm Cultivars, Kentucky Coffee-tree, Hackberry, & Bur Oak).

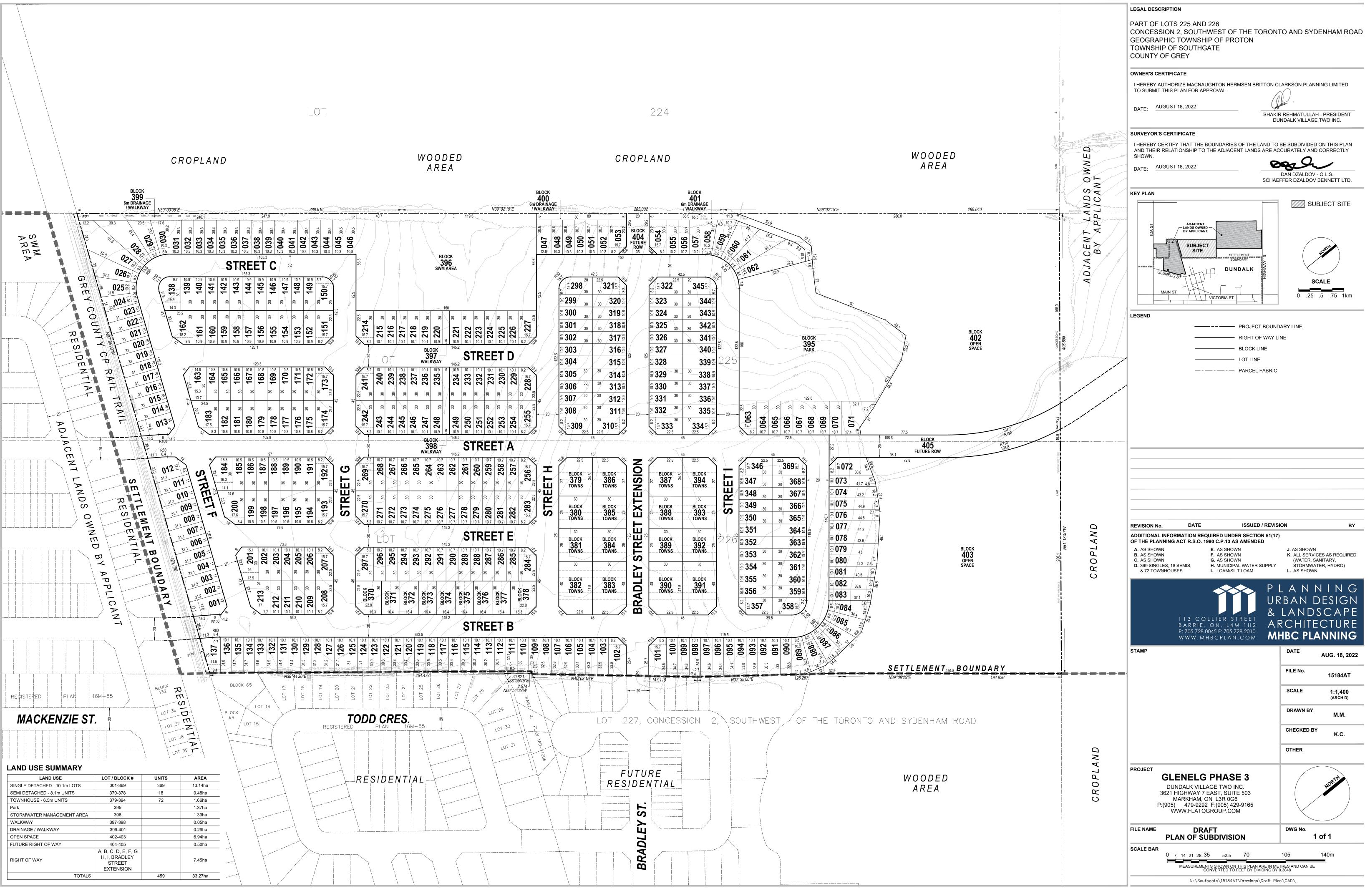
***Use of a Type 4 Bio Retention Mix is recommended for this feature, as per TS 5.10.

Soil Volumes

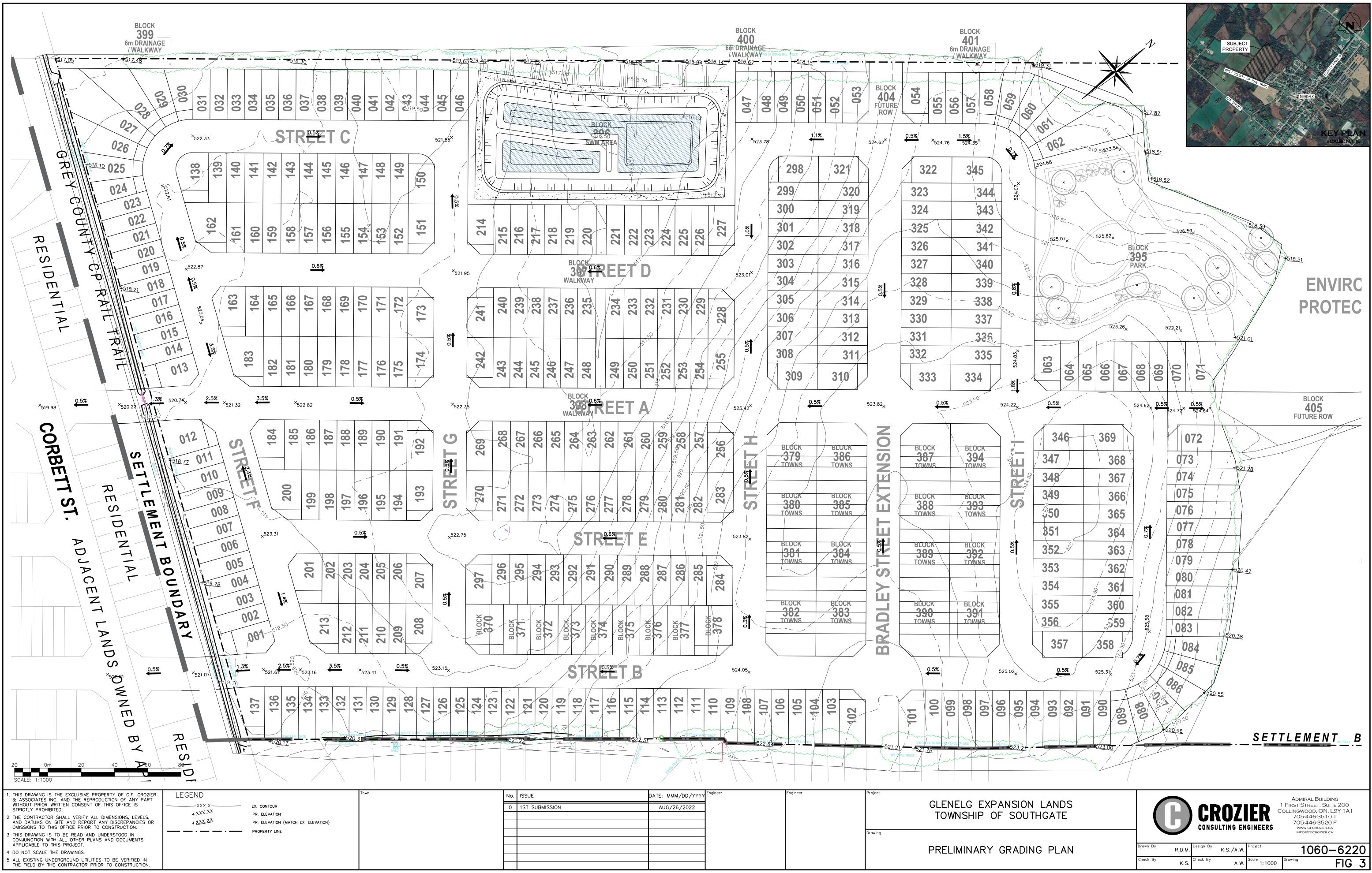
Area ID	Soil Depth (m)	Provided LID Area (m ²)	Provided Volume (m ³)	Allow. Vol per Tree (m ³)*	Allowable Number of Trees in LID
Tree Pit#0A	1.50	3.00	4.5	30	1.0

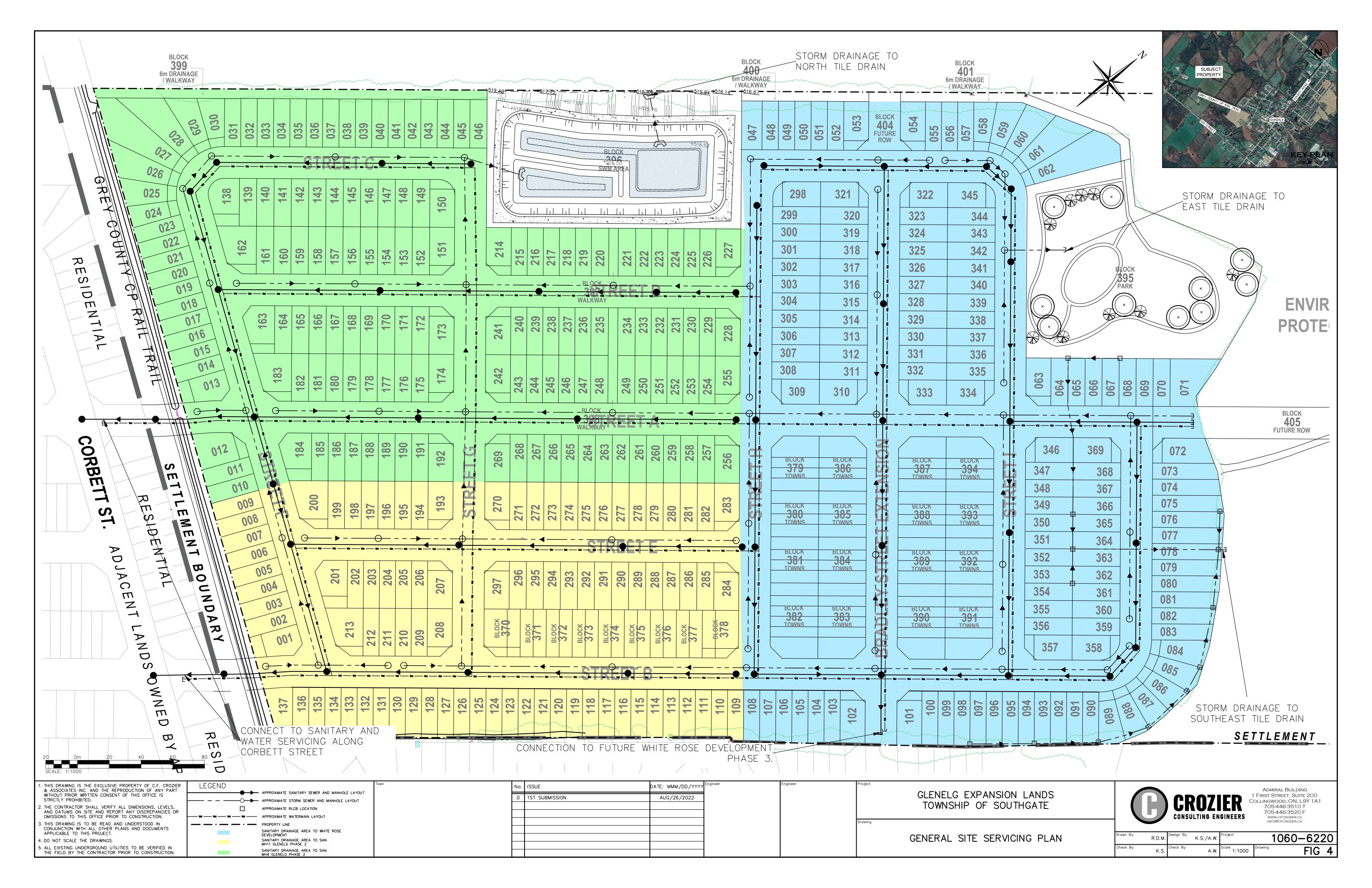

APPENDIX G

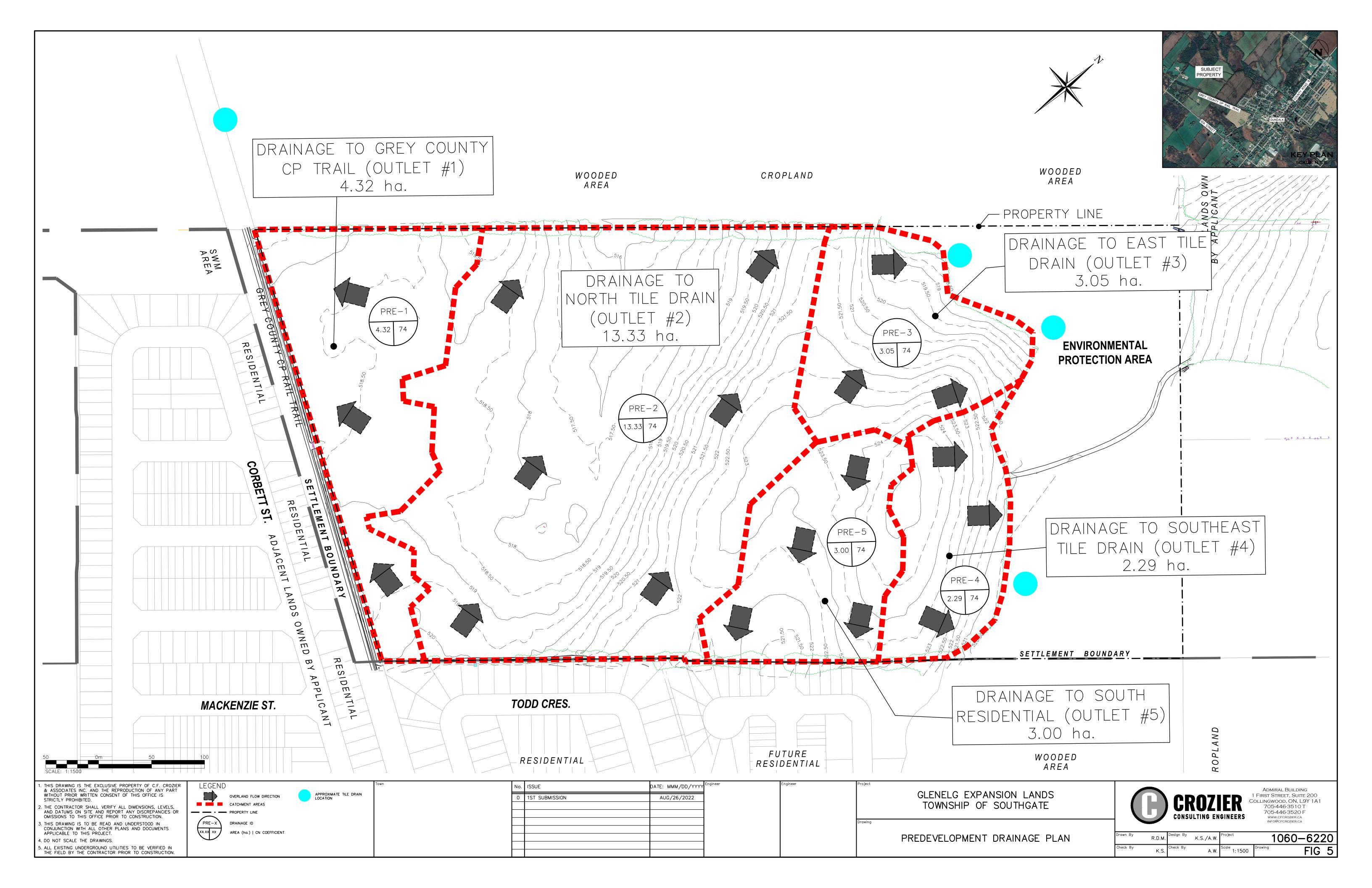
Glenelg Phase 2 Lands Design Excerpts

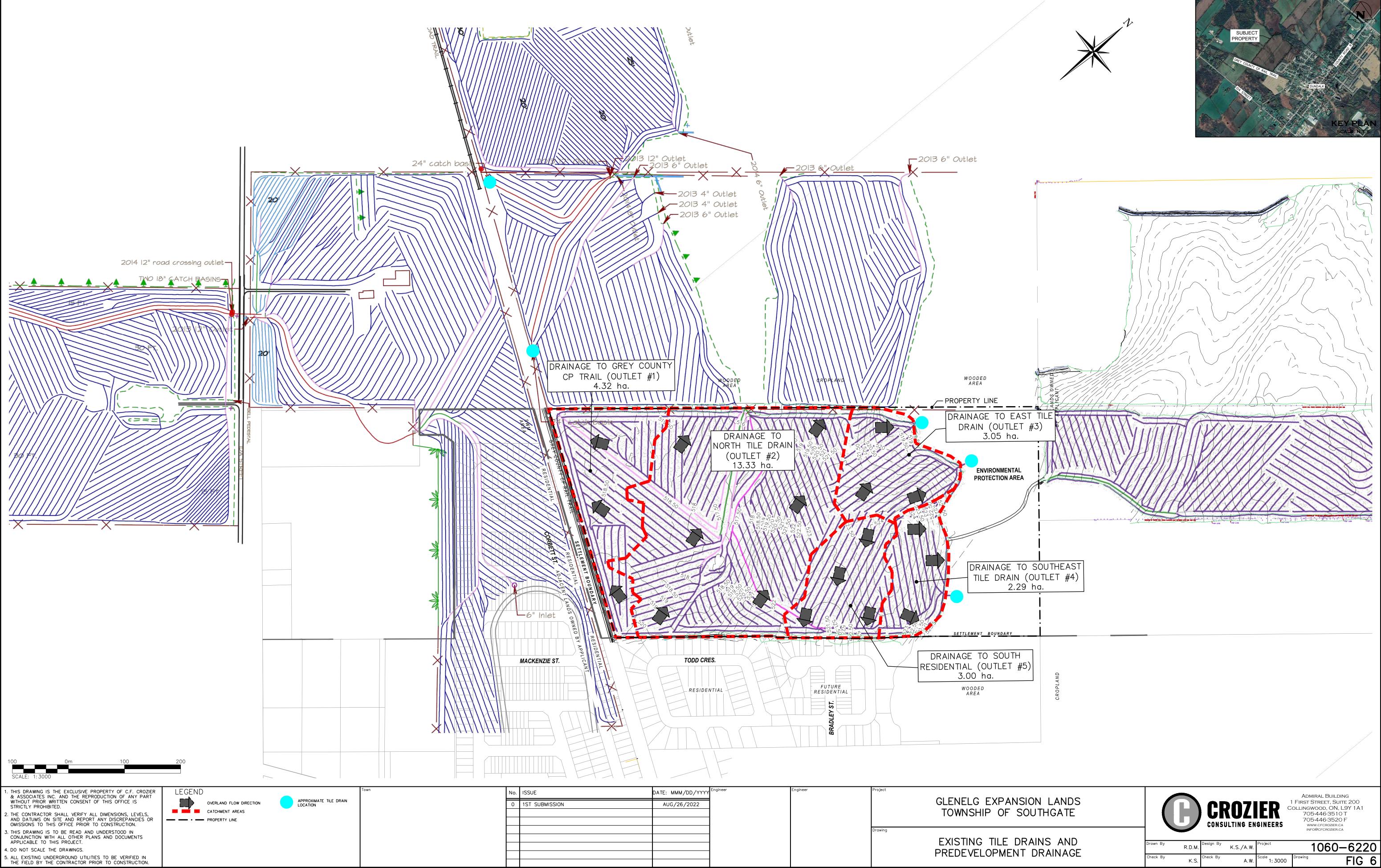

Soils Area (ha) CN Area (ha) So 0.0 0.00 0.00 98 98 98 98 98 50 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	TR-1 0.78		D.A. NAM D.A. AREA		GlenElg Ph 1060-5545 2022-08-28 AM	mber:	Project No Project Nu Date: By:	F				CROZI	
Soli Vpos Present: Type ID Hydrologic Group 5.4 reg Soli Vpos Present: Total Area Check O.78 Interview Landwes Present: Solis Areg (hg) CN Areg (hg)					nd	HYD Comma	LIB STAND	rameters: CA	rologic Pa	Нус			
Curve Number Calculation Soil Types Present: Type ID Hydrologic Group % Area Area Soil Types Present: O.78 Intel Area Check O.78 Intel Area Check O.78 Soils Area (ha) CN Colspan="2" <t< th=""><th></th><th></th><th></th><th></th><th>-1</th><th>atchment TR</th><th>je Area: C</th><th>ment Drainag</th><th>st Develop</th><th>Po</th><th></th><th></th><th></th></t<>					-1	atchment TR	je Area: C	ment Drainag	st Develop	Po			
Soli Types Present: Type ID Hydrologic Group % Area Area Istowel Silt Loam Ls BC 100 0.78 Integration of the sent: O.78 O.78 Suldang Switz Sw						il Trail	a to CP Ra	ontrolled Area	Unc				
Soli Types Present: Type ID Hydrologic Group % Area Area Total Area Check 0.78 Total Area Check 0.78 Solid Area Check 0.78 Solid Area Check 0.78 Solid Area Check O.78 Solid Area Check O.78 Solid Area (ha) CN Area (ha) Solid Area Solid Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN Area (ha) CN													

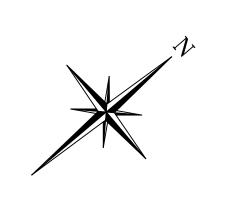
LIST OF FIGURES

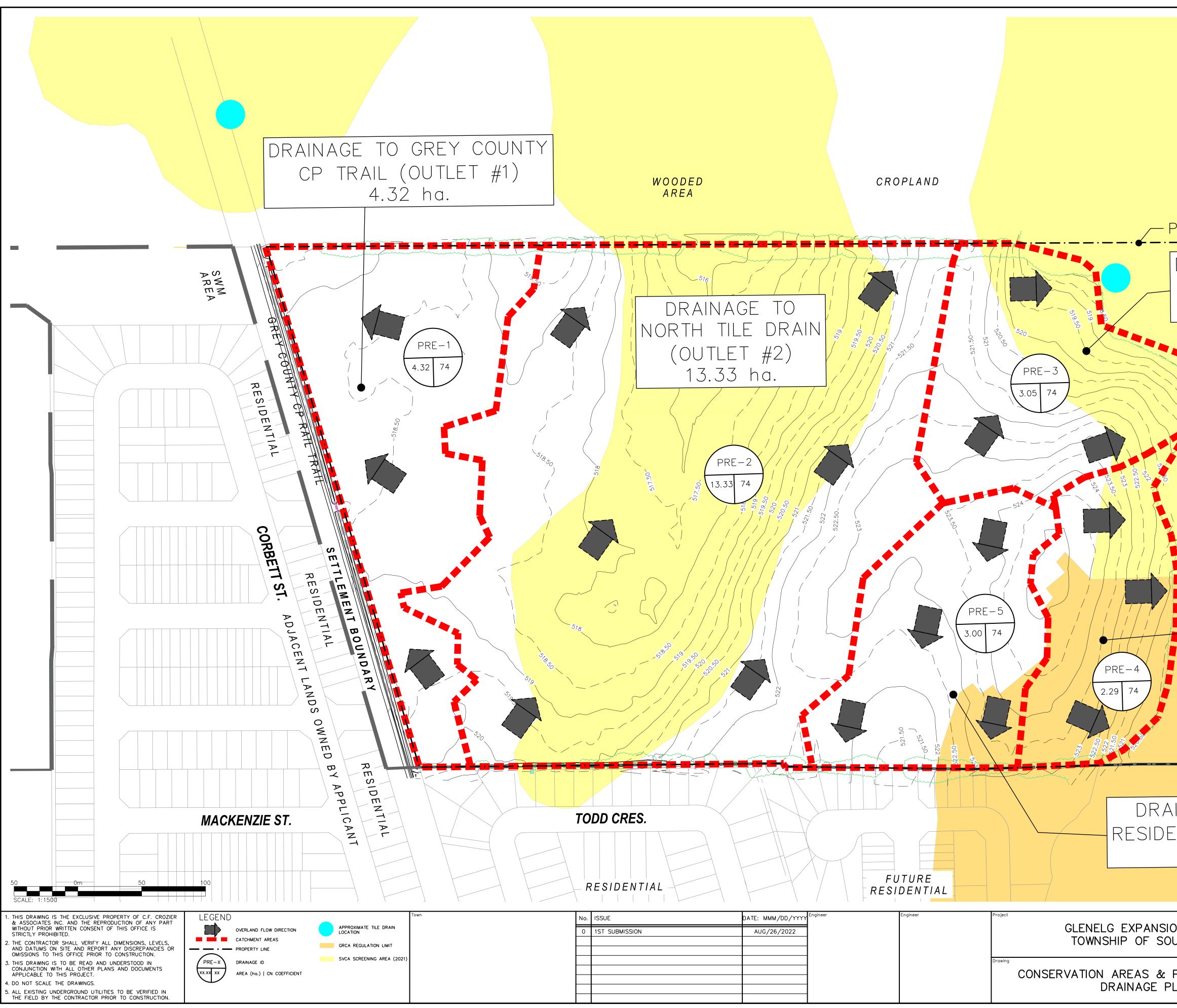

Figure 1:	Site Location Plan
Figure 2:	Draft Plan of Subdivision
Figure 3:	Preliminary Grading Plan
Figure 4:	General Site Servicing Plan
Figure 5:	Pre-Development Drainage Plan
Figure 6:	Existing Tile Drains and Pre-Development Drainage
Figure 7:	Conservation Areas and Pre-Development Drainage Plan
Figure 8:	Post-Development Drainage Plan
Figure 9:	Preliminary SWMF #1
Figure 10:	Proposed LID Plan #1

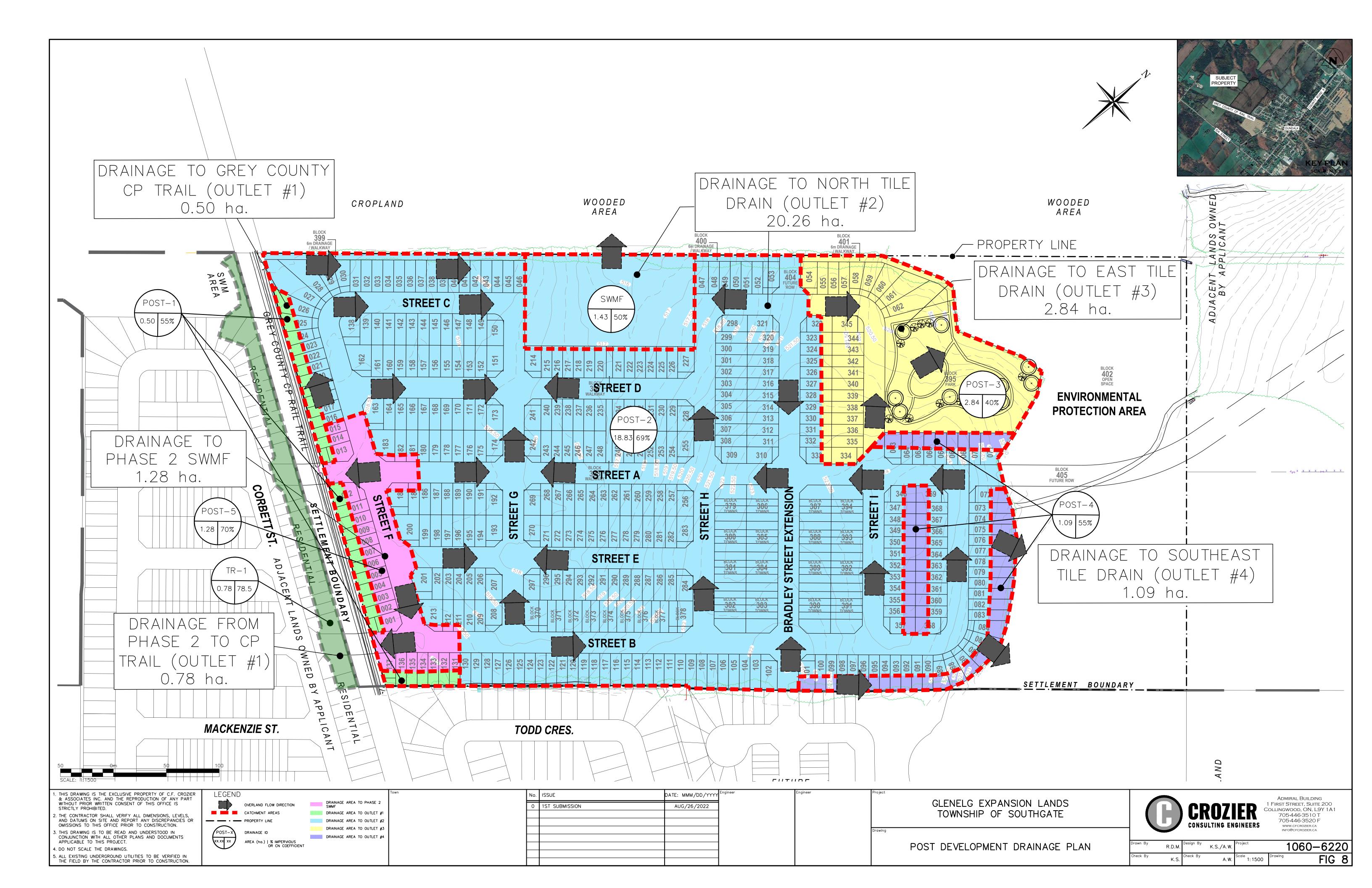


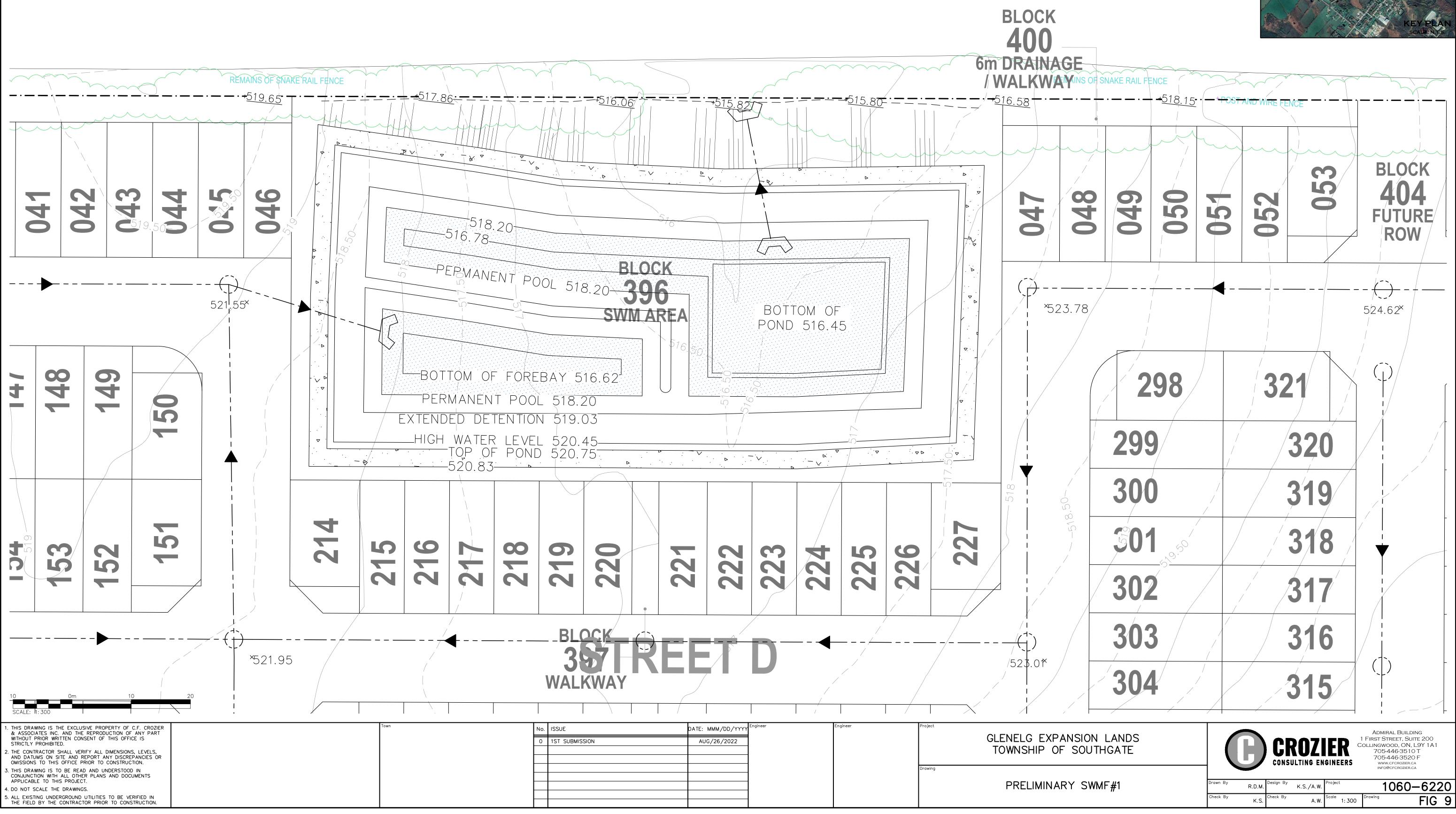

J:\1000\1060-Flato Dev\6220- Glenelg Expansion Lands\CAD\Civil\Internal Review\2022.08.25_Figures\6220 - Site Location.dwg, 2022-08-25 4:55:20 PM, DWG To PDF.pc3

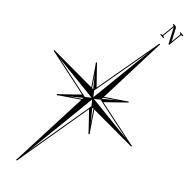




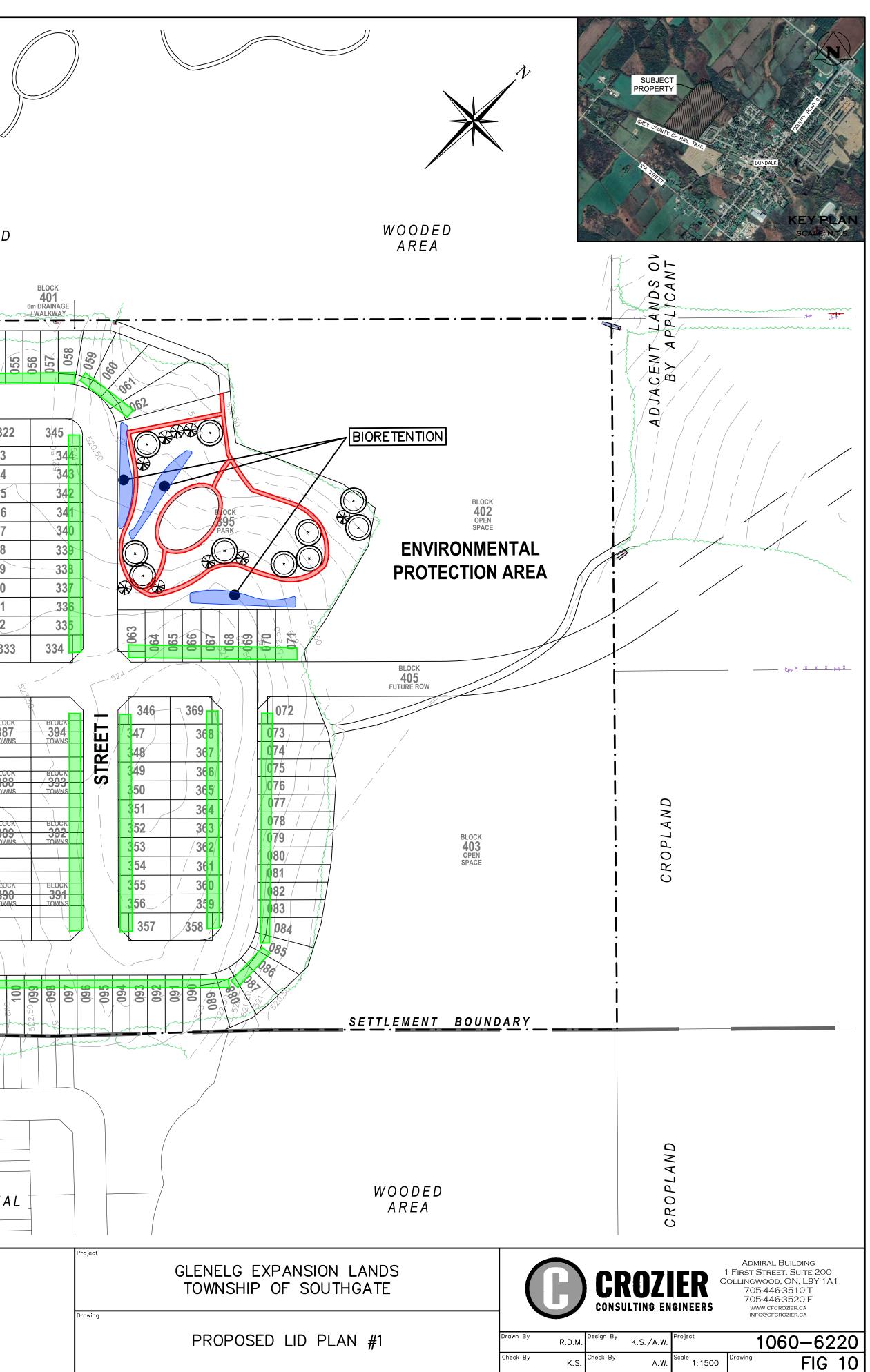








T A A A A A A A A A A A A A A A A A A A		SUBJECT PROPERTY ORCY COLARY OF RALL TRAL DOT DOTTO	EUNDALK
WOODED AREA			SCALLENTS
PROPERTY LINE		ANDS O LICANT	
DRAINAGE TC DRAIN (OU 3.05	TLET #3)	LEAR	
ENVIRONM PROTECTIO	•		
	GE TO SO RAIN (OUT 2.29 ha.	LET #4)	
<u>Settlement Bound</u>	<u>A R Y</u>		
AINAGE TO SO Ential (outle 3.00 ha.		AND	
WOODED AREA		ROPLAND	
ON LANDS OUTHGATE		ROZIER CULTING ENGINEERS	Admiral Building I First Street, Suite 200 ollingwood, ON, L9Y 1A1 705-446-3510 T 705-446-3520 F www.cfcrozier.ca
PREDEVELOPMENT PLAN	Drawn By R.D.M. Design By Check By K.S. Check By	K.S./A.W. Project A.W. Scale 1:1500	INFO@CFCROZIER.CA



AREA

